EXPLOITATION OF THE PRISMA HYPERSPECTRAL PAYLOAD FOR VEGETATION, FUEL AND BURN SCAR MAPPING

被引:0
|
作者
Aurigemma, Renato [1 ]
De Michele, Carlo [2 ]
Bolognesi, Salvatore Falanga [2 ]
Hirn, Barbara [3 ]
Pisacane, Valerio [1 ]
Ravellino, Fabiana [1 ]
lo Moriello, Salvatore Schiano
Ferrucci, Fabrizio [3 ]
机构
[1] Eurosoft Srl, Via Nuova Nuova Poggioreale 60 L,Ctr Polifunz,Bld, I-80143 Naples, Italy
[2] Ariespace Srl, Ctr Direz Isola A3, I-80143 Naples, Italy
[3] IES Consulting Srl, Via San Valentino 34, Rome, Italy
关键词
Hyperspectral; PRISMA; Vegetation; Classification; Mapping; Forest fires; Burn scars;
D O I
10.1109/IGARSS52108.2023.10282099
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We present the preliminary results in the multitemporal mapping of vegetal fuel in two large test areas in southern Italy, one stretching over the heterogeneous forests of northern Sicily, and one covering Mt. Vesuvius and the surrounding areas in the Campania region, Naples. We report on the preliminary results of project HYPERFUEL, started in 2022 and due to completion late in spring 2024. HYPERFUEL focuses on the exploitation of the hyperspectral payload HYC, onboard the LEO platform PRISMA operated by the Italian Space Agency, in combination with multispectral payloads onboard Sentinel-2A and-2B. It is aimed to providing forest planners and fire risk modelers with frequently updated vegetal fuel maps at the nominal scale 1/50,000.
引用
收藏
页码:1740 / 1743
页数:4
相关论文
共 50 条
  • [31] Mapping salt-marsh vegetation by multispectral and hyperspectral remote sensing
    Belluco, Enrica
    Camuffo, Monica
    Ferrari, Sergio
    Modenese, Lorenza
    Silvestri, Sonia
    Marani, Alessandro
    Marani, Marco
    [J]. REMOTE SENSING OF ENVIRONMENT, 2006, 105 (01) : 54 - 67
  • [32] Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review
    Adam, Elhadi
    Mutanga, Onisimo
    Rugege, Denis
    [J]. WETLANDS ECOLOGY AND MANAGEMENT, 2010, 18 (03) : 281 - 296
  • [33] VIBRATIONAL SPECTRAL LINE DETECTION IN GIS ENVIRONMENT FOR MINERAL MAPPING APPLICATIONS OF HYPERSPECTRAL DATA OF THE PRISMA SATELLITE
    Massi, Andrea
    Ortolani, Michele
    Brunetti, Alessandro
    Mazzanti, Paolo
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 1644 - 1647
  • [34] Using PRISMA Hyperspectral Satellite Imagery and GIS Approaches for Soil Fertility Mapping (FertiMap) in Northern Morocco
    Gasmi, Anis
    Gomez, Cecile
    Chehbouni, Abdelghani
    Dhiba, Driss
    El Gharous, Mohamed
    [J]. REMOTE SENSING, 2022, 14 (16)
  • [35] PRISMA hyperspectral imagery for mapping alteration zones associated with Kuhpanj porphyry copper deposit, Southern Iran
    Esmaeili, Maryam
    Fathianpour, Nader
    Soltani-Mohammadi, Saeed
    [J]. EUROPEAN JOURNAL OF REMOTE SENSING, 2024, 57 (01)
  • [36] Assessment and estimation of coal dust impact on vegetation using VIs difference model and PRISMA hyperspectral data in mining sites
    Kayet, Narayan
    Pathak, Khanindra
    Singh, Chandra Prakash
    Chaturvedi, Rajiv Kumar
    Brahmandam, Anjanikumar SV.
    Mandal, Chinmoy
    [J]. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2024, 367
  • [37] Preliminary investigation of submerged aquatic vegetation mapping using hyperspectral remote sensing
    Williams, DJ
    Rybicki, NB
    Lombana, AV
    O'Brien, TM
    Gomez, RB
    [J]. ENVIRONMENTAL MONITORING AND ASSESSMENT, 2003, 81 (1-3) : 383 - 392
  • [38] Multi-agent hyperspectral and lidar features fusion for urban vegetation mapping
    Khoramak, Sahar
    Mahmoudi, Fatemeh Tabib
    [J]. EARTH SCIENCE INFORMATICS, 2023, 16 (01) : 165 - 173
  • [39] Critical Analysis of Urban Vegetation Mapping by Satellite Multispectral and Airborne Hyperspectral Imagery
    Gadal, Sebastien
    Ouerghemmi, Walid
    Barlatier, Romain
    Mozgeris, Gintautas
    [J]. PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON GEOGRAPHICAL INFORMATION SYSTEMS THEORY, APPLICATIONS AND MANAGEMENT (GISTAM 2019), 2019, : 97 - 104
  • [40] Mapping marshland vegetation of San Francisco Bay, California, using hyperspectral data
    Rosso, PH
    Ustin, SL
    Hastings, A
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2005, 26 (23) : 5169 - 5191