Asymptotics of rectangular spherical integrals

被引:3
|
作者
Guionnet, Alice [1 ]
Huang, Jiaoyang [2 ]
机构
[1] CNRS ENS Lyon, Lyon, France
[2] Univ Penn, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
Large deviation; Random matrix theory; Rectangular spherical integral; Dyson Brownian motion; LARGE DEVIATIONS; 1ST-ORDER ASYMPTOTICS; LAGUERRE PROCESS; CONVOLUTION; EIGENVALUES; THEOREM; LIMIT;
D O I
10.1016/j.jfa.2023.110144
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we study the Dyson Bessel process, which describes the evolution of singular values of rectangular matrix Brownian motions, and prove a large deviation principle for its empirical particle density. We then use it to obtain the asymptotics of the so-called rectangular spherical integrals as m, n go to infinity while m/n converges to a positive constant. We also improve and give a new proof of the asymptotics for the Harish-Chandra-Itzykson-Zuber integral derived in [37,38]. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:68
相关论文
共 50 条