A hybrid physics-based and data-driven method for gear contact fatigue life prediction

被引:11
|
作者
Zhou, Changjiang [1 ]
Wang, Haoye [1 ]
Hou, Shengwen [2 ]
Han, Yong [3 ]
机构
[1] Hunan Univ, State Key Lab Adv Design & Manufacture Vehicle Bod, Changsha 410082, Peoples R China
[2] Shaanxi Fast Gear Co Ltd, Shanxi Key Lab Gear Transmiss, Xian 710119, Peoples R China
[3] Xiamen Univ Technol, Sch Mech & Automot Engn, Xiamen 361024, Peoples R China
基金
中国国家自然科学基金;
关键词
Gear contact fatigue; Life prediction; Deep learning; Small sample sets; REMAINING USEFUL LIFE; STRENGTH;
D O I
10.1016/j.ijfatigue.2023.107763
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A hybrid physics-based and data-driven method is proposed for gear contact fatigue life prediction. The parameters influencing the fatigue life are determined by the physics-based model. A deep belief network (DBN) model is developed to reveal the relationships between these parameters and fatigue life. A variational autoencoder (VAE) model is presented to expand the size of the training dataset. The proposed method is verified by a gear contact fatigue test, and the predictions are all within a factor of 1.5 scatter band of the experimental results. This work provides an effective method for life prediction with small sample sets.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Fatigue life prediction of cold expansion hole using physics-enhanced data-driven method
    Mao, Jian-Xing
    Xian, Zhi-Fan
    Wang, Xin
    Hu, Dian-Yin
    Pan, Jin-Chao
    Wang, Rong-Qiao
    Zou, Shi-Kun
    Gao, Yang
    INTERNATIONAL JOURNAL OF FATIGUE, 2025, 190
  • [32] PHYSICS-BASED FATIGUE LIFE PREDICTION OF COMPOSITE STRUCTURES
    Fertig, R. S.
    Kenik, D. J.
    COMPOSITE MATERIALS FOR STRUCTURAL PERFORMANCE: TOWARDS HIGHER LIMITS, 2011, : 263 - 273
  • [33] A Novel Hybrid Physics-Based and Data-Driven Approach for Degradation Trajectory Prediction in Li-Ion Batteries
    Xu, Le
    Deng, Zhongwei
    Xie, Yi
    Lin, Xianke
    Hu, Xiaosong
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2023, 9 (02) : 2628 - 2644
  • [34] Physics-based and data-driven modeling for biomanufacturing 4.0
    Ogunsanya, Michael
    Desai, Salil
    MANUFACTURING LETTERS, 2023, 36 : 91 - 95
  • [35] Physics-Based and Data-Driven Polymer Rheology Model
    Abdullah, M. B.
    Delshad, M.
    Sepehrnoori, K.
    Balhoff, M. T.
    Foster, J. T.
    Al-Murayri, M. T.
    SPE JOURNAL, 2023, 28 (04): : 1857 - 1879
  • [36] Data-driven physics-based modeling of pedestrian dynamics
    Pouw, Caspar A. S.
    van der Vleuten, Geert G. M.
    Corbetta, Alessandro
    Toschi, Federico
    PHYSICAL REVIEW E, 2024, 110 (06)
  • [37] A Hybrid Physics-Based Data-Driven Framework for Anomaly Detection in Industrial Control Systems
    Raman, M. R. Gauthama
    Mathur, Aditya P.
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (09): : 6003 - 6014
  • [38] Efficient pneumatic actuation modeling using hybrid physics-based and data-driven framework
    Zhang, Zhizhou
    Jin, Zeqing
    Gu, Grace X.
    CELL REPORTS PHYSICAL SCIENCE, 2022, 3 (04):
  • [39] A Physics-Based Data-Driven Model for History Matching, Prediction, and Characterization of Unconventional Reservoirs
    Zhang, Yanbin
    He, Jincong
    Yang, Changdong
    Xie, Jiang
    Fitzmorris, Robert
    Wen, Xian-Huan
    SPE JOURNAL, 2018, 23 (04): : 1105 - 1125
  • [40] A new physics-based data-driven guideline for wear modelling and prediction of train wheels
    Zeng, Yuanchen
    Song, Dongli
    Zhang, Weihua
    Zhou, Bin
    Xie, Mingyuan
    Tang, Xu
    WEAR, 2020, 456 (456-457)