New algorithm for solving pentadiagonal CUPL-Toeplitz linear systems

被引:1
|
作者
Fahd, Hcini [1 ]
Zhang, Yulin [2 ]
机构
[1] Univ Tunis El Manar, ENIT LAMSIN, BP 37, Tunis 1002, Tunisia
[2] Univ Minho, Ctr Matemat, P-4710057 Braga, Portugal
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2023年 / 42卷 / 03期
关键词
CUPL-Toeplitz matrix; Sherman-Morrison-Woodbury formula; Toeplitz matrix; low rank matrix; LU decomposition; CYCLIC DISPLACEMENTS; MATRICES; INVERSE;
D O I
10.1007/s40314-023-02253-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, based on the structure of pentadiagonal CUPL-Toeplitz matrix and Sherman-Morrison-Woodbury formula, we develop a new algorithm for solving nonsingular pentadiagonal CUPL-Toeplitz linear system. Some numerical examples are given in order to illustrate the effectiveness of the proposed algorithms.
引用
下载
收藏
页数:14
相关论文
共 50 条
  • [31] A New Algorithm Model for Solving Fuzzy Linear Systems
    Li, Jicheng
    Li, Wei
    Kong, Xu
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2010, 34 (01) : 121 - 132
  • [32] An efficient algorithm for solving general periodic Toeplitz systems
    Chakraborty, M
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (03) : 784 - 787
  • [33] Fast algorithm for solving block banded Toeplitz systems with banded Toeplitz blocks
    Reeves, SJ
    2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 3325 - 3328
  • [34] A PARALLEL ALGORITHM SOLVING A TRIDIAGONAL TOEPLITZ LINEAR-SYSTEM
    KIM, HJ
    LEE, JG
    PARALLEL COMPUTING, 1990, 13 (03) : 289 - 294
  • [35] A superfast algorithm for toeplitz systems of linear equations
    Chandrasekaran, S.
    Gu, M.
    Sun, X.
    Xia, J.
    Zhu, J.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2007, 29 (04) : 1247 - 1266
  • [36] Numerical algorithm for the determinant evaluation of cyclic pentadiagonal matrices with Toeplitz structure
    Ji-Teng Jia
    Su-Mei Li
    Numerical Algorithms, 2016, 71 : 337 - 348
  • [37] A computational algorithm for special nth-order pentadiagonal Toeplitz determinants
    Kilic, Emrah
    El-Mikkawy, Moawwad
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 199 (02) : 820 - 822
  • [38] Numerical algorithm for the determinant evaluation of cyclic pentadiagonal matrices with Toeplitz structure
    Jia, Ji-Teng
    Li, Su-Mei
    NUMERICAL ALGORITHMS, 2016, 71 (02) : 337 - 348
  • [39] Polyhedral Omega: a New Algorithm for Solving Linear Diophantine Systems
    Felix Breuer
    Zafeirakis Zafeirakopoulos
    Annals of Combinatorics, 2017, 21 : 211 - 280
  • [40] A structure-preserving algorithm for linear systems with circulant pentadiagonal coefficient matrices
    Qiong-Xiang Kong
    Ji-Teng Jia
    Journal of Mathematical Chemistry, 2015, 53 : 1617 - 1633