Time-resolved cryo-EM of G-protein activation by a GPCR

被引:28
|
作者
Papasergi-Scott, Makaia M. [1 ]
Perez-Hernandez, Guillermo [2 ,3 ,4 ]
Batebi, Hossein [5 ]
Gao, Yang [1 ]
Eskici, Goezde [1 ]
Seven, Alpay B. [1 ]
Panova, Ouliana [1 ]
Hilger, Daniel [1 ,6 ]
Casiraghi, Marina [1 ,7 ]
He, Feng [1 ]
Maul, Luis [8 ]
Gmeiner, Peter [8 ]
Kobilka, Brian K. [1 ]
Hildebrand, Peter W. [2 ,3 ,4 ,5 ,9 ]
Skiniotis, Georgios [1 ,10 ]
机构
[1] Stanford Univ, Sch Med, Dept Mol & Cellular Physiol, Stanford, CA 94305 USA
[2] Charite Univ Med Berlin, Berlin, Germany
[3] Free Univ Berlin, Berlin, Germany
[4] Humboldt Univ, Inst Med Phys & Biophys, Berlin, Germany
[5] Univ Leipzig, Inst Med Phys & Biophys, Fac Med, Leipzig, Germany
[6] Philipps Univ Marburg, Inst Pharmaceut Chem, Marburg, Germany
[7] Univ Milan, Dipartimento Biosci, Milan, Italy
[8] Friedrich Alexander Univ Erlangen Nurnberg, Dept Chem & Pharm, Med Chem, Erlangen, Germany
[9] Charite Univ Med Berlin, Berlin Inst Hlth, Berlin, Germany
[10] Stanford Univ, Sch Med, Dept Struct Biol, Stanford, CA 94305 USA
基金
美国国家卫生研究院;
关键词
BETA(2) ADRENERGIC-RECEPTOR; CRYSTAL-STRUCTURE; ADENYLATE-CYCLASE; DYNAMIC PROCESS; FORCE-FIELD; ALPHA; BINDING; COMPLEX; CONFORMATIONS; INTERFACE;
D O I
10.1038/s41586-024-07153-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
G-protein-coupled receptors (GPCRs) activate heterotrimeric G proteins by stimulating guanine nucleotide exchange in the G alpha subunit1. To visualize this mechanism, we developed a time-resolved cryo-EM approach that examines the progression of ensembles of pre-steady-state intermediates of a GPCR-G-protein complex. By monitoring the transitions of the stimulatory Gs protein in complex with the beta 2-adrenergic receptor at short sequential time points after GTP addition, we identified the conformational trajectory underlying G-protein activation and functional dissociation from the receptor. Twenty structures generated from sequential overlapping particle subsets along this trajectory, compared to control structures, provide a high-resolution description of the order of main events driving G-protein activation in response to GTP binding. Structural changes propagate from the nucleotide-binding pocket and extend through the GTPase domain, enacting alterations to G alpha switch regions and the alpha 5 helix that weaken the G-protein-receptor interface. Molecular dynamics simulations with late structures in the cryo-EM trajectory support that enhanced ordering of GTP on closure of the alpha-helical domain against the nucleotide-bound Ras-homology domain correlates with alpha 5 helix destabilization and eventual dissociation of the G protein from the GPCR. These findings also highlight the potential of time-resolved cryo-EM as a tool for mechanistic dissection of GPCR signalling events. Time-resolved cryo-EM is used to capture structural transitions during G-protein activation stimulated by a G-protein-coupled receptor.
引用
收藏
页码:1182 / 1191
页数:28
相关论文
共 50 条
  • [1] Frozen in action: cryo-EM structure of a GPCR–G-protein complex
    Mithu Baidya
    Hemlata Dwivedi
    Arun K Shukla
    Nature Structural & Molecular Biology, 2017, 24 : 500 - 502
  • [2] Microsecond Time-Resolved Cryo-EM
    Lorenz, Ulrich
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2023, 52 (SUPPL 1): : S59 - S59
  • [3] Time-resolved cryo-EM using Spotiton
    Dandey, Venkata P.
    Budell, William C.
    Wei, Hui
    Bobe, Daija
    Maruthi, Kashyap
    Kopylov, Mykhailo
    Eng, Edward T.
    Kahn, Peter A.
    Hinshaw, Jenny E.
    Kundu, Nidhi
    Nimigean, Crina M.
    Fan, Chen
    Sukomon, Nattakan
    Darst, Seth A.
    Saecker, Ruth M.
    Chen, James
    Malone, Brandon
    Potter, Clinton S.
    Carragher, Bridget
    NATURE METHODS, 2020, 17 (09) : 897 - +
  • [4] Time-resolved cryo-EM using Spotiton
    Venkata P. Dandey
    William C. Budell
    Hui Wei
    Daija Bobe
    Kashyap Maruthi
    Mykhailo Kopylov
    Edward T. Eng
    Peter A. Kahn
    Jenny E. Hinshaw
    Nidhi Kundu
    Crina M. Nimigean
    Chen Fan
    Nattakan Sukomon
    Seth A. Darst
    Ruth M. Saecker
    James Chen
    Brandon Malone
    Clinton S. Potter
    Bridget Carragher
    Nature Methods, 2020, 17 : 897 - 900
  • [5] Structural dynamics: review of time-resolved cryo-EM
    Maeots, Mart-Erik
    Enchev, Radoslav, I
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2022, 78 : 927 - 935
  • [6] Time-resolved Cryo-EM visualizes snapshots of dynein's activation pathway
    Kendrick, Agnieszka
    Reck-Peterson, Samara L.
    Leschziner, Andres
    BIOPHYSICAL JOURNAL, 2023, 122 (03) : 315A - 315A
  • [7] Phase-plate cryo-EM structure of a class B GPCR–G-protein complex
    Yi-Lynn Liang
    Maryam Khoshouei
    Mazdak Radjainia
    Yan Zhang
    Alisa Glukhova
    Jeffrey Tarrasch
    David M. Thal
    Sebastian G. B. Furness
    George Christopoulos
    Thomas Coudrat
    Radostin Danev
    Wolfgang Baumeister
    Laurence J. Miller
    Arthur Christopoulos
    Brian K. Kobilka
    Denise Wootten
    Georgios Skiniotis
    Patrick M. Sexton
    Nature, 2017, 546 : 118 - 123
  • [8] Time-resolved cryo-EM visualizes the structural dynamics of translation
    Korostelev, Andrei
    Loveland, Anna
    Demo, Gabriel
    Carbone, Christine
    BIOPHYSICAL REVIEWS, 2021, 13 (06) : 1498 - 1498
  • [9] Time-resolved cryo-EM visualizes ribosomal translocation with EF-G and GTP
    Christine E. Carbone
    Anna B. Loveland
    Howard B. Gamper
    Ya-Ming Hou
    Gabriel Demo
    Andrei A. Korostelev
    Nature Communications, 12
  • [10] Light-coupled cryo-plunger for time-resolved cryo-EM
    Yoder, Nate
    Jalali-Yazdi, Farzad
    Noreng, Sigrid
    Houser, Alexandra
    Baconguis, Isabelle
    Gouaux, Eric
    JOURNAL OF STRUCTURAL BIOLOGY, 2020, 212 (03)