A new optimal error analysis of a mixed finite element method for advection-diffusion-reaction Brinkman flow

被引:1
|
作者
Gao, Huadong [1 ,2 ]
Xie, Wen [1 ,2 ,3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan, Peoples R China
[2] Huazhong Univ Sci & Technol, Hubei Key Lab Engn Modeling & Sci Comp, Wuhan, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Brinkman flow; mixed finite element method; Nedelec edge element; Raviart-Thomas element; optimal error estimate; INCOMPRESSIBLE MISCIBLE FLOW; FORMULATION; DISPLACEMENT; FEMS;
D O I
10.1002/num.23097
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article deals with the error analysis of a Galerkin-mixed finite element methods for the advection-reaction-diffusion Brinkman flow in porous media. Numerical methods for incompressible miscible flow in porous media have been studied extensively in the last several decades. In practical applications, the lowest-order Galerkin-mixed method is the most popular one, where the linear Lagrange element is used for the concentration and the lowest-order Raviart-Thomas element, the lowest-order Nedelec edge element and piece-wise constant discontinuous Galerkin element are used for the velocity, vorticity and pressure, respectively. The existing error estimate of this lowest-order finite element method is only O(h)$$ O(h) $$ for all variables in spatial direction, which is not optimal for the concentration variable. This paper focuses on a new and optimal error estimate of a linearized backward Euler Galerkin-mixed FEMs, where the second-order accuracy for the concentration in spatial directions is established unconditionally. The key to our optimal error analysis is a new negative norm estimate for Nedelec edge element. Moreover, based on the computed numerical concentration, we propose a simple one-step recovery technique to obtain a new numerical velocity, vorticity and pressure with second-order accuracy. Numerical experiments are provided to confirm our theoretical analysis.
引用
下载
收藏
页数:22
相关论文
共 50 条
  • [41] Analysis of the Unconditionally Positive Finite Difference Scheme for Advection-Diffusion-Reaction Equations with Different Regimes
    Appadu, A. R.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738
  • [42] Convergence analysis on computation of coupled advection-diffusion-reaction problems
    Dong, W. B.
    Tang, H. S.
    Liu, Y. J.
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 420
  • [43] A parameter-free dynamic diffusion method for advection-diffusion-reaction problems
    Valli, Andrea M. P.
    Almeida, Regina C.
    Santos, Isaac P.
    Catabriga, Lucia
    Malta, Sandra M. C.
    Coutinho, Alvaro L. G. A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (01) : 307 - 321
  • [44] A posteriori error estimator and h-adaptive finite element method for diffusion-advection-reaction problems
    Ostapov, O.
    Vovk, O.
    Shynkarenko, H.
    RECENT ADVANCES IN COMPUTATIONAL MECHANICS, 2014, : 329 - 337
  • [45] A complex variable boundary element method for solving a steady-state advection-diffusion-reaction equation
    Wang, Xue
    Ang, Whye-Teong
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 321 : 731 - 744
  • [46] A posteriori error analysis of a mixed virtual element method for a nonlinear Brinkman model of porous media flow
    Munar, Mauricio
    Sequeira, Filander A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (05) : 1240 - 1259
  • [47] The Finite Volume-Complete Flux Scheme for Advection-Diffusion-Reaction Equations
    J. H. M. ten Thije Boonkkamp
    M. J. H. Anthonissen
    Journal of Scientific Computing, 2011, 46 : 47 - 70
  • [48] A posteriori error analysis of an augmented mixed finite element method for Darcy flow
    Barrios, Tomas P.
    Manuel Cascon, J.
    Gonzalez, Maria
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 283 : 909 - 922
  • [49] A non-standard finite difference scheme for an advection-diffusion-reaction equation
    Qin, Wendi
    Ding, Deqiong
    Ding, Xiaohua
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (15) : 3308 - 3321
  • [50] Dimension reduction numerical closure method for advection-diffusion-reaction systems
    Tartakovsky, A. M.
    Scheibe, T. D.
    ADVANCES IN WATER RESOURCES, 2011, 34 (12) : 1616 - 1626