3D-printed hydrogels based on amphiphilic chitosan derivative loaded with levofloxacin for wound healing applications

被引:9
|
作者
Lazaridou, Maria [1 ,2 ]
Moroni, Sofia [1 ]
Klonos, Panagiotis [3 ]
Kyritsis, Apostolos [3 ]
Bikiaris, Dimitrios N. [2 ]
Lamprou, Dimitrios A. [1 ]
机构
[1] Queens Univ Belfast, Sch Pharm, Belfast, North Ireland
[2] Aristotle Univ Thessaloniki, Dept Chem, Thessaloniki, Greece
[3] Natl Tech Univ Athens, Dept Phys, Athens, Greece
关键词
3D printing; cationic acrylate monomer; chitosan; collagen; elastin; gelatin; hydrogels; levofloxacin; wound healing; ANTIBACTERIAL; IMPACT; FILMS; BIOMATERIALS; DELIVERY; GELATIN; ELASTIN;
D O I
10.1080/00914037.2024.2314610
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Skin wounds not only cause physical pain to patients but also pose an economic burden to society. Consequently, effective approaches to promote skin repair remain a challenge. Specifically, chitosan-based hydrogels are ideal candidates to promote wound healing at different stages and while diminishing the factors that impede this process (such as excessive inflammatory and chronic wound infection). Furthermore, the unique biological properties of a chitosan-based hydrogel enable it to serve as both a wound dressing and a drug delivery system (DDS). In the present work, chitosan (CS) graft copolymer with [2-(methacryloyloxy)ethyl] trimethyl ammonium chloride (CS-MTAC), a cationic monomer with promising antibacterial properties, was synthesized. The successful synthesis of the copolymer was confirmed, while it was studied for its swelling ability and water absorption capacity, as well as for its biocompatibility and antibacterial properties. Expecting to improve its printability, the copolymer was blended with elastin (EL), collagen (COL), and increasing concentrations of gelatin (GEL). The hydrogel with 6% w/v CS, 4% w/w EL, 4% w/w COL and 1% w/v GEL was selected for its potential to be 3D-printed and was neutralized with ammonia vapors or ethanol/sodium hydroxide solution and loaded with levofloxacin. The feasibility of CS-MTAC/EL/COL/GEL bioink, loaded with Levo, as a suitable candidate for wound healing and drug delivery applications, has been demonstrated.
引用
收藏
页码:67 / 84
页数:18
相关论文
共 50 条
  • [11] 3D Printed Pericardium Hydrogels To Promote Wound Healing in Vascular Applications
    Bracaglia, Laura G.
    Messina, Michael
    Winston, Shira
    Kuo, Che-Ying
    Lerman, Max
    Fisher, John P.
    BIOMACROMOLECULES, 2017, 18 (11) : 3802 - 3811
  • [12] Current Biomedical Applications of 3D-Printed Hydrogels
    Barcena, Allan John R.
    Dhal, Kashish
    Patel, Parimal
    Ravi, Prashanth
    Kundu, Suprateek
    Tappa, Karthik
    GELS, 2024, 10 (01)
  • [13] 3D Printed Hydrogels for Ocular Wound Healing
    Aghamirsalim, Mohamadreza
    Mobaraki, Mohammadmahdi
    Soltani, Madjid
    Shahvandi, Mohammad Kiani
    Jabbarvand, Mahmoud
    Afzali, Elham
    Raahemifar, Kaamran
    BIOMEDICINES, 2022, 10 (07)
  • [14] Poly(caprolactone)/lignin-based 3D-printed dressings loaded with a novel combination of bioactive agents for wound-healing applications
    Dominguez-Robles, Juan
    Cuartas-Gomez, Elias
    Dynes, Sean
    Utomo, Emilia
    Anjani, Qonita Kurnia
    Detamornrat, Usanee
    Donnelly, Ryan F.
    Moreno-Castellanos, Natalia
    Larraneta, Eneko
    SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2023, 35
  • [15] 3D-Printed Chitosan Composites for Biomedical Applications
    Murugan, Sesha Subramanian
    Anil, Sukumaran
    Sivakumar, Padmanaban
    Shim, Min Suk
    Venkatesan, Jayachandran
    CHITOSAN FOR BIOMATERIALS IV: BIOMEDICAL APPLICATIONS, 2021, 288 : 87 - 116
  • [16] 3D-Printed Multifunctional Hydrogels with Phytotherapeutic Properties: Development of Essential Oil-Incorporated ALG-XAN Hydrogels for Wound Healing Applications
    Unalan, Irem
    Schruefer, Stefan
    Schubert, Dirk W.
    Boccaccini, Aldo R.
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2023, 9 (07) : 4149 - 4167
  • [17] Development of a Tacrolimus-loaded carboxymethyl chitosan scaffold as an effective 3D-printed wound dressing
    Al-Hashmi, Sulaiman
    Vakilian, Saeid
    Jamshidi-adegani, Fatemeh
    Al-Kindi, Juhaina
    Al-Fahdi, Fahad
    Al-Hatmi, Abdullah M. S.
    Al-Jahdhami, Habib
    Anwar, Muhammad U.
    Al-Wahaibi, Nasar
    Shalaby, Asem
    Al-Harrasi, Ahmed
    JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2023, 86
  • [18] The preparation of 3D-printed self-healing hydrogels composed of carboxymethyl chitosan and oxidized dextran via stereolithography for biomedical applications
    Risangud, Nuttapol
    Lertwimol, Tareerat
    Sitthisang, Sonthikan
    Wongvitvichot, Wasupon
    Uppanan, Paweena
    Tanodekaew, Siriporn
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2025, 292
  • [19] A 3D-printed grid-like hyaluronic acid based hydrogel loaded with deferoxamine as wound dressing promotes diabetic wound healing
    Yang, Hu
    Wang, Yong
    Li, Run
    Shen, Yi-Fan
    Zhou, Fei-Fei
    Tan, Wei-Qiang
    Wang, Yue
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2025, 303
  • [20] 3D Printed Chitosan/Alginate Hydrogels for the Controlled Release of Silver Sulfadiazine in Wound Healing Applications: Design, Characterization and Antimicrobial Activity
    Bergonzi, Carlo
    Bianchera, Annalisa
    Remaggi, Giulia
    Ossiprandi, Maria Cristina
    Bettini, Ruggero
    Elviri, Lisa
    MICROMACHINES, 2023, 14 (01)