Data-Driven Control of COVID-19 in Buildings: A Reinforcement-Learning Approach

被引:3
|
作者
Hosseinloo, Ashkan Haji [1 ]
Nabi, Saleh [2 ]
Hosoi, Anette [3 ]
Dahleh, Munther A. [1 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] Mitsubishi Elect Res Labs, Cambridge, MA 02139 USA
[3] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
关键词
Disease control; reinforcement learning; data-driven control; HVAC system; AIRBORNE TRANSMISSION; VENTILATION;
D O I
10.1109/TASE.2023.3315549
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In addition to its public health crisis, COVID-19 pandemic has led to the shutdown and closure of workplaces with an estimated total cost of more than $16 trillion. Given the long hours an average person spends in buildings and indoor environments, this research article proposes data-driven control strategies to design optimal indoor airflow to minimize the exposure of occupants to viral pathogens in built environments. A general control framework is put forward for designing an optimal velocity field and proximal policy optimization, a reinforcement learning algorithm is employed to solve the control problem in a data-driven fashion. The same framework is used for optimal placement of disinfectants to neutralize the viral pathogens as an alternative to the airflow design when the latter is practically infeasible or hard to implement. We show, via computational simulations, that the control agent learns the optimal policy in both scenarios within a reasonable time. The proposed data-driven control framework in this study will have significant societal and economic benefits by setting the foundation for an improved methodology in designing case-specific infection control guidelines that can be realized by affordable ventilation devices and disinfectants.Note to Practitioners-This paper is motivated by the problem of COVID-19 infection spread in enclosed spaces but it also applies to other airborne pathogens. Airborne disease contagion often takes place in indoor environments; however, ventilation systems are almost never designed to take this into account so as to contain the spread of the pathogens. This is mainly because airflow design requires solving high-dimensional nonlinear partial differential equations known as Navier Stokes equations in fluid dynamics. In this paper, we propose a data-driven approach for solving the control problem of pathogen containment without solving the fluid dynamics equations. To this end, we first mathematically formulate the problem as an optimal control problem and then cast it as a reinforcement learning (RL) task. Reinforcement learning is the data-driven science of sequential decision-making and control in which the controller finds an optimal solution by systematic trial and error and without access to the system dynamics, i.e. fluid and pathogen dynamics in this paper. We employ an state-of-the-art RL algorithm, called PPO, to solve for optimal airflow in a room so as to minimize the exposure risk of occupants. Once it is calculated, the optimal airflow could be realized, via reverse engineering, by proper placement of the ventilation equipment, e.g. inlets, outlets, and fans. As an alternative to the airflow design, we use the same proposed data-driven techniques to find an optimal placement for pathogen disinfectants if there exists one, such as, hydrogen peroxide for COVID-19. Our results show the efficacy of our data-driven approach in designing an steady-state controller with full access to the system states. In future research, we will address the controller design with sparse measurements of the system states.
引用
收藏
页码:5691 / 5699
页数:9
相关论文
共 50 条
  • [41] Data-driven decision making improves quality control for COVID-19 vaccine production
    Chang, Michael
    Plant Engineering, 2021, 75 (07) : 38 - 40
  • [42] Data-Driven Hospital Admission Control: A Learning Approach
    Zhalechian, Mohammad
    Keyvanshokooh, Esmaeil
    Shi, Cong
    Van Oyen, Mark P.
    OPERATIONS RESEARCH, 2023, 71 (06) : 2111 - 2129
  • [43] An evaluation of COVID-19 in Italy: A data-driven modeling analysis
    Ding, Yongmei
    Gao, Liyuan
    INFECTIOUS DISEASE MODELLING, 2020, 5 : 495 - 501
  • [44] Data-Driven Solutions in Smart Cities: The case of Covid-19
    Petrovic, Nenad N.
    Dimovski, Vlado
    Peterlin, Judita
    Mesko, Maja
    Roblek, Vasja
    WEB CONFERENCE 2021: COMPANION OF THE WORLD WIDE WEB CONFERENCE (WWW 2021), 2021, : 648 - 656
  • [45] DATA-DRIVEN COVID-19 DETECTION THROUGH MEDICAL IMAGING
    Arsenos, Anastasios
    Davidhi, Andjoli
    Kollias, Dimitrios
    Prassopoulos, Panos
    Kollias, Stefanos
    2023 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING WORKSHOPS, ICASSPW, 2023,
  • [46] Data-Driven Prediction for COVID-19 Severity in Hospitalized Patients
    Alrajhi, Abdulrahman A.
    Alswailem, Osama A.
    Wali, Ghassan
    Alnafee, Khalid
    AlGhamdi, Sarah
    Alarifi, Jhan
    AlMuhaideb, Sarab
    ElMoaqet, Hisham
    AbuSalah, Ahmad
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (05)
  • [47] Healthcare management and COVID-19: data-driven bibliometric analytics
    Monalisha Pattnaik
    OPSEARCH, 2023, 60 : 234 - 255
  • [48] Data-driven mathematical modeling approaches for COVID-19: A survey
    Demongeot, Jacques
    Magal, Pierre
    PHYSICS OF LIFE REVIEWS, 2024, 50 : 166 - 208
  • [49] A Survey on Data-driven COVID-19 and Future Pandemic Management
    Tao, Yudong
    Yang, Chuang
    Wang, Tianyi
    Coltey, Erik
    Jin, Yanxiu
    Liu, Yinghao
    Jiang, Renhe
    Fan, Zipei
    Song, Xuan
    Shibasaki, Ryosuke
    Chen, Shu-Ching
    Shyu, Mei-Ling
    Luis, Steven
    ACM COMPUTING SURVEYS, 2023, 55 (07)
  • [50] From predictions to prescriptions: A data-driven response to COVID-19
    Dimitris Bertsimas
    Leonard Boussioux
    Ryan Cory-Wright
    Arthur Delarue
    Vassilis Digalakis
    Alexandre Jacquillat
    Driss Lahlou Kitane
    Galit Lukin
    Michael Li
    Luca Mingardi
    Omid Nohadani
    Agni Orfanoudaki
    Theodore Papalexopoulos
    Ivan Paskov
    Jean Pauphilet
    Omar Skali Lami
    Bartolomeo Stellato
    Hamza Tazi Bouardi
    Kimberly Villalobos Carballo
    Holly Wiberg
    Cynthia Zeng
    Health Care Management Science, 2021, 24 : 253 - 272