Global existence and uniform boundedness to a bi-attraction chemotaxis system with nonlinear indirect signal mechanisms

被引:1
|
作者
Wang, Chang-Jian [1 ]
Zhu, Jia-Yue [1 ]
机构
[1] Xinyang Normal Univ, Sch Math & Stat, Xinyang 464000, Peoples R China
来源
关键词
bi-attraction chemotaxis system; nonlinear indirect signal; global boundedness; LARGE TIME BEHAVIOR; KELLER-SEGEL SYSTEMS; BLOW-UP RESULT; HAPTOTAXIS MODEL; LOGISTIC GROWTH; STOKES SYSTEM; FINITE;
D O I
10.3934/cam.2023036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following quasilinear chemotaxis system ut = increment u - chi V center dot (phi(u)Vv) - xi V center dot (psi(u)Vw) + f(u) , x E S2 , t > 0 , 0 = increment v - v + v gamma 1 1 , 0 = increment v1 - v1 + u gamma 2 , xE S2 , t>0 , 0= increment w - w + w gamma 3 1 , 0 = increment w1 - w1 + u gamma 4 , xE S2 , t>0 , in a smoothly bounded domain S2 c Rn(n > 1) with homogeneous Neumann boundary conditions, where phi(rho) < rho(rho +1)theta-1 , psi(rho) < rho(rho +1)l-1 and f(rho) < a rho - b rho s for all rho > 0 , and the parameters satisfy a , b , chi, xi, gamma 2 , gamma 4 > 0 , s > 1 , gamma 1 , gamma 3 > 1 and theta, l E R. It has been proven that ifs > max{gamma 1 gamma 2 + theta, gamma 3 gamma 4 + l) , then the system has a nonnegative classical solution that is globally bounded. The boundedness condition obtained in this paper relies only on the power exponents of the system, which is independent of the coefficients of the system and space dimension n. In this work, we generalize the results established by previous researchers.
引用
收藏
页码:743 / 762
页数:20
相关论文
共 50 条