Some new properties of geometrically-convex functions

被引:1
|
作者
Furuichi, Shigeru [1 ]
Minculete, Nicusor [2 ]
Moradi, Hamid Reza [3 ]
Sababheh, Mohammad [4 ]
机构
[1] Nihon Univ, Coll Humanities & Sci, Dept Informat Sci, Setagaya Ku, Tokyo, Japan
[2] Transilvania Univ Brasov, Dept Math & Comp Sci, Brasov 500091, Romania
[3] Islamic Azad Univ, Dept Math, Mashhad Branch, Mashhad, Iran
[4] Princess Sumaya Univ Technol, Dept Basic Sci, Amman 11941, Jordan
关键词
Geometrically-convex function; Hermite-Hadamard inequality; doubly-convex functions; HADAMARD TYPE INEQUALITIES; INTEGRAL-INEQUALITIES; JENSEN;
D O I
10.2989/16073606.2023.2256476
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The class of geometrically convex functions is a rich class that contains some important functions. In this paper, we further explore this class and present many interesting new properties, including fundamental inequalities, supermultiplicative type inequalities, Jensen-Mercer inequality, integral inequalities, and refined forms. The obtained results extend some celebrated results from the context of convexity to geometric convexity, with interesting applications to numerical inequalities for the hyperbolic and exponential functions.
引用
收藏
页码:831 / 849
页数:19
相关论文
共 50 条
  • [31] φ-Geometrically Log h-Convex Functions
    Safdar, Farhat
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2019, 51 (09): : 71 - 83
  • [32] Some Hermite-Hadamard type inequalities for geometrically quasi-convex functions
    Qi, Feng
    Xi, Bo-Yan
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2014, 124 (03): : 333 - 342
  • [33] SOME SIMPSON TYPE INTEGRAL INEQUALITIES FOR s-GEOMETRICALLY CONVEX FUNCTIONS WITH APPLICATIONS
    Kavurmaci-Onalan, Havva
    Tunc, Mevlut
    MATEMATICHE, 2014, 69 (02): : 193 - 204
  • [34] Some Fejer Type Integral Inequalities for Geometrically-Arithmetically-Convex Functions with Applications
    Latif, Muhammad Amer
    Dragomir, Sever Silvestru
    Momoniat, Ebrahim
    FILOMAT, 2018, 32 (06) : 2193 - 2206
  • [35] Some Properties for a New Generalized Subclass of Close-to-Convex Harmonic Functions
    Shuhai LI
    Li-na MA
    Huo TANG
    En AO
    Journal of Mathematical Research with Applications, 2024, 44 (06) : 769 - 781
  • [36] SOME INTEGRAL INEQUALITIES FOR THE NEW CONVEX FUNCTIONS
    Maden, Selahattin
    Demirel, Ayse Kubra
    Turhan, Sercan
    Iscan, Imdat
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2018, 9 (03): : 305 - 312
  • [37] Some new Hermite-Hadamard type inequalities for geometrically quasi-convex functions on co-ordinates
    Guo, Xu-Yang
    Qi, Feng
    Xi, Bo-Yan
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2015, 8 (05): : 740 - 749
  • [38] Some New Generalizations for GA - Convex Functions
    Akdemir, Ahmet Ocak
    Ozdemir, M. Emin
    Ardic, Merve Avci
    Yalcin, Abdullatif
    FILOMAT, 2017, 31 (04) : 1009 - 1016
  • [39] SOME NEW CLASSES OF CONVEX FUNCTIONS AND INEQUALITIES
    Awan, Muhammad Uzair
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    Khan, Awais Gul
    MISKOLC MATHEMATICAL NOTES, 2018, 19 (01) : 77 - 94
  • [40] An Araki-Lieb-Thirring inequality for geometrically concave and geometrically convex functions
    Audenaert, Koenraad M. R.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (08) : 3454 - 3462