TexPose: Neural Texture Learning for Self-Supervised 6D Object Pose Estimation

被引:14
|
作者
Chen, Hanzhi [1 ]
Manhardt, Fabian [2 ]
Navab, Nassir [1 ]
Busam, Benjamin [1 ,3 ]
机构
[1] Tech Univ Munich, Munich, Germany
[2] Google Inc, Mountain View, CA USA
[3] 3Dwe ai, Haifa, Israel
来源
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR | 2023年
关键词
D O I
10.1109/CVPR52729.2023.00469
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we introduce neural texture learning for 6D object pose estimation from synthetic data and a few unlabelled real images. Our major contribution is a novel learning scheme which removes the drawbacks of previous works, namely the strong dependency on co-modalities or additional refinement. These have been previously necessary to provide training signals for convergence. We formulate such a scheme as two sub-optimisation problems on texture learning and pose learning. We separately learn to predict realistic texture of objects from real image collections and learn pose estimation from pixel-perfect synthetic data. Combining these two capabilities allows then to synthesise photorealistic novel views to supervise the pose estimator with accurate geometry. To alleviate pose noise and segmentation imperfection present during the texture learning phase, we propose a surfel-based adversarial training loss together with texture regularisation from synthetic data. We demonstrate that the proposed approach significantly outperforms the recent state-of-the-art methods without ground-truth pose annotations and demonstrates substantial generalisation improvements towards unseen scenes. Remarkably, our scheme improves the adopted pose estimators substantially even when initialised with much inferior performance.
引用
收藏
页码:4841 / 4852
页数:12
相关论文
共 50 条
  • [31] Learning Symmetry-Aware Geometry Correspondences for 6D Object Pose Estimation
    Zhao, Heng
    Wei, Shenxing
    Shi, Dahu
    Tan, Wenming
    Li, Zheyang
    Ren, Ye
    Wei, Xing
    Yang, Yi
    Pu, Shiliang
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 13999 - 14008
  • [32] SLAM-Supported Self-Training for 6D Object Pose Estimation
    Lu, Ziqi
    Zhang, Yihao
    Doherty, Kevin
    Severinsen, Odin
    Yang, Ethan
    Leonard, John
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 2833 - 2840
  • [33] Confidence-Based 6D Object Pose Estimation
    Huang, Wei-Lun
    Hung, Chun-Yi
    Lin, I-Chen
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 3025 - 3035
  • [34] A 6D Object Pose Estimation Method combining Self-attention Mechanism
    Sun, Yifan
    Dai, Sumin
    Dang, Jianwu
    Yong, Jiu
    2024 5TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATION, ICCEA 2024, 2024, : 1315 - 1319
  • [35] ConvPoseCNN: Dense Convolutional 6D Object Pose Estimation
    Capellen, Catherine
    Schwarz, Max
    Behnke, Sven
    PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 5: VISAPP, 2020, : 162 - 172
  • [36] Focal segmentation for robust 6D object pose estimation
    Ye, Yuning
    Park, Hanhoon
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (16) : 47563 - 47585
  • [37] 6D Object Pose Estimation for Robot Programming by Demonstration
    Ghahramani, Mohammad
    Vakanski, Aleksandar
    Janabi-Sharifi, Farrokh
    PROGRESS IN OPTOMECHATRONIC TECHNOLOGIES, 2019, 233 : 93 - 101
  • [38] Generalizable and Accurate 6D Object Pose Estimation Network
    Fu, Shouxu
    Li, Xiaoning
    Yu, Xiangdong
    Cao, Lu
    Li, Xingxing
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT III, 2024, 14427 : 312 - 324
  • [39] Segmentation-driven 6D Object Pose Estimation
    Hu, Yinlin
    Hugonot, Joachim
    Fua, Pascal
    Salzmann, Mathieu
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 3380 - 3389
  • [40] RobotP: A Benchmark Dataset for 6D Object Pose Estimation
    Yuan, Honglin
    Hoogenkamp, Tim
    Veltkamp, Remco C.
    SENSORS, 2021, 21 (04) : 1 - 26