Phosphorus-doped silicon copper alloy composites as high-performance anode materials for lithium-ion batteries

被引:6
|
作者
Li, Qi [1 ]
Yu, Mo [1 ]
Huang, Yating [1 ]
Cai, Zhenfei [1 ]
Wang, Shuai [1 ]
Ma, Yangzhou [1 ]
Song, Guangsheng [1 ]
Yu, Zexin [2 ]
Yang, Weidong [3 ]
Wen, Cuie [4 ]
机构
[1] Anhui Univ Technol, Sch Mat Sci & Engn, Key Lab Green Fabricat & Surface Technol Adv Met M, Minist Educ, Maanshan 243000, Peoples R China
[2] Soochow Univ, Sch Mech & Elect Engn, Suzhou 215123, Peoples R China
[3] CSIRO, Future Mfg Flagship, Melbourne, Vic 3168, Australia
[4] RMIT Univ, Sch Engn, Bundoora, Vic 3083, Australia
基金
安徽省自然科学基金;
关键词
Lithium-ion batteries; Silicon anodes; Si-Cu alloy; Doping; POROUS CARBON; BORON;
D O I
10.1016/j.jelechem.2023.117684
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Silicon (Si) anodes are considered one of the most promising candidates for next-generation lithium-ion batteries, owing to their high theoretical capacity. However, Si-based anodes suffer from significant volume expansion during lithiation, leading to severe mechanical degradation and poor cycling stability. To address these challenges, We developed phosphorus (P)-doped Si-Cu alloy composites via a simple vacuum melting method. The incorporation of Cu3Si in the composites effectively suppressed the volume expansion of Si, while P doping enabled the formation of N-type Si to improve electrical conductivity. In our study, we conducted a comprehensive analysis of the electrochemical performance of the P-doped Si-Cu alloy composites. Among the samples, the P0.5% Si-Cu alloy composite exhibited the most exceptional electrochemical performance, with a capacity of 1048 mAh/g after 60 cycles at the current density of 100 mA/g. Electrochemical impedance spectroscopy (EIS) measurements revealed a lower Rct value of 73.65 & omega; for the P0.5% Si-Cu alloy composite compared to 175.2 & omega; for the Si-Cu alloy composite. Our theoretical calculations also demonstrated that P doping reduces the energy barrier for lithium-ion diffusion. Our study validated the potential of P-doped Si-Cu alloy composites as highperformance anode materials for lithium-ion batteries and provides new insights into the design of Si-based anodes with improved stability and cycling performance.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Graphene composites as anode materials in lithium-ion batteries
    M. Mazar Atabaki
    R. Kovacevic
    Electronic Materials Letters, 2013, 9 : 133 - 153
  • [42] Graphene Composites as Anode Materials in Lithium-Ion Batteries
    Atabaki, M. Mazar
    Kovacevic, R.
    ELECTRONIC MATERIALS LETTERS, 2013, 9 (02) : 133 - 153
  • [43] Polyaniline encapsulated silicon nanocomposite as high-performance anode materials for lithium ion batteries
    Hua-Chao Tao
    Xue-Lin Yang
    Lu-Lu Zhang
    Shi-Bing Ni
    Journal of Solid State Electrochemistry, 2014, 18 : 1989 - 1994
  • [44] Silicon nanoparticles grown on a reduced graphene oxide surface as high-performance anode materials for lithium-ion batteries
    Kannan, Aravindaraj G.
    Kim, Sang Hyung
    Yang, Hwi Soo
    Kim, Dong-Won
    RSC ADVANCES, 2016, 6 (30): : 25159 - 25166
  • [45] Polyaniline encapsulated silicon nanocomposite as high-performance anode materials for lithium ion batteries
    Tao, Hua-Chao
    Yang, Xue-Lin
    Zhang, Lu-Lu
    Ni, Shi-Bing
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2014, 18 (07) : 1989 - 1994
  • [46] Synthesis of macroporous carbon materials as anode material for high-performance lithium-ion batteries
    Fu, Yuan-Xiang
    Pei, Xian-Yinan
    Mo, Dong-Chuan
    Lyu, Shu-Shen
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2019, 30 (05) : 5092 - 5097
  • [47] Synthesis of Porous NiO Nanorods as High-Performance Anode Materials for Lithium-Ion Batteries
    Li, Qian
    Huang, Gang
    Yin, Dongming
    Wu, Yaoming
    Wang, Limin
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2016, 33 (10) : 764 - 770
  • [48] Exploring the potential of MXene nanohybrids as high-performance anode materials for lithium-ion batteries
    Bandaru, Narendra
    Reddy, Ch. Venkata
    Vallabhudasu, Kalyani
    Vijayalakshmi, Mule
    Reddy, Kakarla Raghava
    Cheolho, Bai
    Shim, Jaesool
    Aminabhavi, Tejraj M.
    CHEMICAL ENGINEERING JOURNAL, 2024, 500
  • [49] CuSn(OH)6 Nanocubes as High-Performance Anode Materials for Lithium-Ion Batteries
    Zhou, Zhaofu
    Chen, Tian
    Deng, Jianqiu
    Yao, Qingrong
    Wang, Zhongmin
    Zhou, Huaiying
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (02): : 2001 - 2009
  • [50] SiGe porous nanorod arrays as high-performance anode materials for lithium-ion batteries
    Yu, Jingxue
    Du, Ning
    Wang, Jiazheng
    Zhang, Hui
    Yang, Deren
    JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 577 : 564 - 568