Joint evaluation of placebo and treatment effects in cluster randomized trials by causal inference models
被引:0
|
作者:
Liu, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Sch Management, Harbin, Peoples R ChinaHarbin Inst Technol, Sch Management, Harbin, Peoples R China
Liu, Wei
[1
]
Zhang, Bo
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Med Sch, Boston Childrens Hosp, Res Design Ctr, Dept Neurol & ICCTR Biostat, Boston, MA 02115 USAHarbin Inst Technol, Sch Management, Harbin, Peoples R China
Zhang, Bo
[2
]
机构:
[1] Harbin Inst Technol, Sch Management, Harbin, Peoples R China
[2] Harvard Med Sch, Boston Childrens Hosp, Res Design Ctr, Dept Neurol & ICCTR Biostat, Boston, MA 02115 USA
The term placebo effect refers to the psychobiological effect of a patient's knowledge or belief of being treated. A placebo effect is patient-driven, which makes it fundamentally different from the usual treatment effect resulting from external actions. In modern clinical research, the presence of a placebo effect is often treated as a nuisance issue, something to be "adjusted away" in estimating a treatment effect of primary interest. However, from a patient-centered perspective, we believe that a possible placebo produces substantial improvements in patient -centered outcomes. Understanding placebo effects is therefore an important part of patient-centered outcomes research. The available methods for estimating placebo effects are designed for individually randomized trials and are not directly applicable to cluster randomized trials (CRTs). There are several challenges in estimating placebo effects in CRTs. A major challenge is the possible presence of interference within clusters, in the sense that a subject's outcome may depend on the beliefs subjects in the same cluster about treatment assignment (mentality) and therefore possible correlation in outcome and mentality among subjects exists in the same cluster. In this article, we extend the previously developed causal inference framework to also encompass CRTs, using the G-Computation and inverse probability weighting (IPW) approaches. We also develop methodologies and further extend the G-Computation and IPW approaches to handle missingness for jointly evaluating placebo effect and treatment-specific effect, specifically in the context of CRTs. The proposed methods are demonstrated in simulation studies and a cluster randomized trial on effect of fermented dairy drink.
机构:
Univ London London Sch Hyg & Trop Med, Dept Epidemiol & Populat Hlth, London WC1E 7HT, EnglandUniv London London Sch Hyg & Trop Med, Dept Epidemiol & Populat Hlth, London WC1E 7HT, England
Nitsch, D
Molokhia, M
论文数: 0引用数: 0
h-index: 0
机构:
Univ London London Sch Hyg & Trop Med, Dept Epidemiol & Populat Hlth, London WC1E 7HT, EnglandUniv London London Sch Hyg & Trop Med, Dept Epidemiol & Populat Hlth, London WC1E 7HT, England
Molokhia, M
Smeeth, L
论文数: 0引用数: 0
h-index: 0
机构:
Univ London London Sch Hyg & Trop Med, Dept Epidemiol & Populat Hlth, London WC1E 7HT, EnglandUniv London London Sch Hyg & Trop Med, Dept Epidemiol & Populat Hlth, London WC1E 7HT, England
Smeeth, L
DeStavola, BL
论文数: 0引用数: 0
h-index: 0
机构:
Univ London London Sch Hyg & Trop Med, Dept Epidemiol & Populat Hlth, London WC1E 7HT, EnglandUniv London London Sch Hyg & Trop Med, Dept Epidemiol & Populat Hlth, London WC1E 7HT, England
DeStavola, BL
Whittaker, JC
论文数: 0引用数: 0
h-index: 0
机构:
Univ London London Sch Hyg & Trop Med, Dept Epidemiol & Populat Hlth, London WC1E 7HT, EnglandUniv London London Sch Hyg & Trop Med, Dept Epidemiol & Populat Hlth, London WC1E 7HT, England
Whittaker, JC
Leon, DA
论文数: 0引用数: 0
h-index: 0
机构:
Univ London London Sch Hyg & Trop Med, Dept Epidemiol & Populat Hlth, London WC1E 7HT, EnglandUniv London London Sch Hyg & Trop Med, Dept Epidemiol & Populat Hlth, London WC1E 7HT, England
机构:
Duke Univ, Dept Biostat & Bioinformat, Sch Med, Durham, NC 27710 USA
Duke Univ, Duke Global Hlth Inst, Sch Med, Durham, NC 27710 USADuke Univ, Dept Biostat & Bioinformat, Sch Med, Durham, NC 27710 USA
Wang, Xueqi
Turner, Elizabeth L.
论文数: 0引用数: 0
h-index: 0
机构:
Duke Univ, Dept Biostat & Bioinformat, Sch Med, Durham, NC 27710 USA
Duke Univ, Duke Global Hlth Inst, Sch Med, Durham, NC 27710 USADuke Univ, Dept Biostat & Bioinformat, Sch Med, Durham, NC 27710 USA
Turner, Elizabeth L.
Li, Fan
论文数: 0引用数: 0
h-index: 0
机构:
Yale Univ, Dept Biostat, Sch Publ Hlth, New Haven, CT USA
Yale Univ, Ctr Methods Implementat & Prevent Sci, Sch Publ Hlth, New Haven, CT USADuke Univ, Dept Biostat & Bioinformat, Sch Med, Durham, NC 27710 USA
Li, Fan
Wang, Rui
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Pilgrim Hlth Care Inst, Dept Populat Med, Boston, MA USA
Harvard Med Sch, Boston, MA 02115 USA
Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USADuke Univ, Dept Biostat & Bioinformat, Sch Med, Durham, NC 27710 USA
Wang, Rui
Moyer, Jonathan
论文数: 0引用数: 0
h-index: 0
机构:
NIH, Off Dis Prevent, Bethesda, MD USADuke Univ, Dept Biostat & Bioinformat, Sch Med, Durham, NC 27710 USA
Moyer, Jonathan
Cook, Andrea J.
论文数: 0引用数: 0
h-index: 0
机构:
Kaiser Permanente Washington Hlth Res Inst, Biostat Unit, Seattle, WA USA
Univ Washington, Dept Biostat, Seattle, WA 98195 USADuke Univ, Dept Biostat & Bioinformat, Sch Med, Durham, NC 27710 USA
Cook, Andrea J.
Murray, David M.
论文数: 0引用数: 0
h-index: 0
机构:
NIH, Off Dis Prevent, Bethesda, MD USADuke Univ, Dept Biostat & Bioinformat, Sch Med, Durham, NC 27710 USA
Murray, David M.
Heagerty, Patrick J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Washington, Dept Biostat, Seattle, WA 98195 USADuke Univ, Dept Biostat & Bioinformat, Sch Med, Durham, NC 27710 USA