Deep Learning Based Traffic Prediction Method for Digital Twin Network

被引:12
|
作者
Lai, Junyu [1 ]
Chen, Zhiyong [1 ]
Zhu, Junhong [1 ]
Ma, Wanyi [1 ]
Gan, Lianqiang [1 ]
Xie, Siyu [1 ]
Li, Gun [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Aeronaut & Astronaut, Chengdu 611731, Peoples R China
关键词
Deep neural network; LSTM; Digital twin network; Traffic prediction; Traffic matrix; FLOW PREDICTION; INTERNET;
D O I
10.1007/s12559-023-10136-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Network traffic prediction (NTP) can predict future traffic leveraging historical data, which serves as proactive methods for network resource planning, allocation, and management. Besides, NTP can also be applied for load generation in simulated and emulated as well as digital twin networks (DTNs). This paper focuses on accurately predicting background traffic matrix (TM) of typical local area network (LAN) for traffic synchronization in DTN. A survey is firstly conducted on DTN, conventional model, and deep learning based NTP methods. Then, as the major contribution, a linear feature enhanced convolutional long short-term memory (ConvLSTM) model based NTP method is proposed for LAN. An autoregressive unit is integrated into the ConvLSTM model to improve its linear prediction ability. In addition, this paper further optimizes the proposed model from both spatial and channel-wise dimensions. Particularly, a traffic pattern attention (TPA) block and a squeeze & excitation (SE) block are derived and added to the enhanced ConvLSTM (eConvLSTM) model. Comparative experiments demonstrate that the eConvLSTM model outperforms all the baselines. It can improve the prediction accuracy by reducing the mean square error (MSE) up to 10.6% for one-hop prediction and 16.8% for multi-hops prediction, compared to the legacy CovnLSTM model, with still satisfying the efficiency requirements. The further enhancement of the eConvLSTM model can additionally reduce the MSE about 2.1% for one-hop prediction and 4.2% for multi-hops prediction, with slightly degrading efficiency. The proposed eConvLSTM model based NTP method can play a vital role on DTN traffic synchronization.
引用
收藏
页码:1748 / 1766
页数:19
相关论文
共 50 条
  • [41] Network Traffic Feature Engineering Based on Deep Learning
    Wang, Kai
    Chen, Liyun
    Wang, Shuai
    Wang, Zengguang
    3RD ANNUAL INTERNATIONAL CONFERENCE ON INFORMATION SYSTEM AND ARTIFICIAL INTELLIGENCE (ISAI2018), 2018, 1069
  • [42] Network Traffic Prediction Based on LSTM and Transfer Learning
    Wan, Xianbin
    Liu, Hui
    Xu, Hao
    Zhang, Xinchang
    IEEE ACCESS, 2022, 10 : 86181 - 86190
  • [43] Graph Attention Spatial-Temporal Network for Deep Learning Based Mobile Traffic Prediction
    He, Kaiwen
    Huang, Yufen
    Chen, Xu
    Zhou, Zhi
    Yu, Shuai
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [44] A Network Traffic Intrusion Detection Method for Industrial Control Systems Based on Deep Learning
    Jin, Kai
    Zhang, Lei
    Zhang, Yujie
    Sun, Duo
    Zheng, Xiaoyuan
    ELECTRONICS, 2023, 12 (20)
  • [45] Wireless Network Abnormal Traffic Detection Method Based on Deep Transfer Reinforcement Learning
    Xia, Yuanjun
    Dong, Shi
    Peng, Tao
    Wang, Tao
    2021 17TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING (MSN 2021), 2021, : 528 - 535
  • [46] A Method for Robust and Explainable Image-Based Network Traffic Classification with Deep Learning
    Hattak, Amine
    Iadarola, Giacomo
    Martinelli, Fabio
    Mercaldo, Francesco
    Santone, Antonella
    PROCEEDINGS OF THE 20TH INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY, SECRYPT 2023, 2023, : 385 - 393
  • [47] End-to-end encrypted network traffic classification method based on deep learning
    Tian S.
    Gong F.
    Mo S.
    Li M.
    Wu W.
    Xiao D.
    Journal of China Universities of Posts and Telecommunications, 2020, 27 (03): : 21 - 30
  • [48] End-to-end encrypted network traffic classification method based on deep learning
    Tian Shiming
    Gong Feixiang
    Mo Shuang
    Li Meng
    Wu Wenrui
    Xiao Ding
    TheJournalofChinaUniversitiesofPostsandTelecommunications, 2020, 27 (03) : 21 - 30
  • [49] Deep Learning-Based Network Traffic Prediction for Secure Backbone Networks in Internet of Vehicles
    Wang, Xiaojie
    Nie, Laisen
    Ning, Zhaolong
    Guo, Lei
    Wang, Guoyin
    Gao, Xinbo
    Kumar, Neeraj
    ACM TRANSACTIONS ON INTERNET TECHNOLOGY, 2022, 22 (04)
  • [50] Intelligent Prediction of Urban Road Network Carrying Capacity and Traffic Flow Based on Deep Learning
    Cai, Yong
    Xu, Jianglong
    Jiao, Sheng
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (02) : 2067 - 2079