Estimation, Prediction and Life Testing Plan for the Exponentiated Gumbel Type-II Progressive Censored Data

被引:2
|
作者
Maiti, Kousik [1 ]
Kayal, Suchandan [1 ]
机构
[1] Natl Inst Technol Rourkela, Dept Math, Rourkela 769008, India
关键词
EM algorithm; stochastic EM algorithm; Lindley's approximation; importance sampling; MH algorithm; optimal censoring; BAYESIAN-INFERENCE; ALGORITHM;
D O I
10.57805/revstat.v21i4.440
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
center dot This article accentuates the estimation and prediction of a three-parameter exponentiated Gumbel type-II (EGT-II) distribution when the data are progressively type-II (PT-II) censored. We obtain maximum likelihood (ML) estimates using expectation maximization (EM) and stochastic expectation maximization (StEM) algorithms. The existence and uniqueness of the ML estimates are discussed. We construct bootstrap confidence intervals. The Bayes estimates are derived with respect to a general entropy loss function. We adopt Lindley's approximation, importance sampling and Metropolis-Hastings (MH) methods. The highest posterior density credible interval is computed based on MH algorithm. Bayesian predictors and associated Bayesian predictive interval estimates are obtained. A real life data set is considered for the purpose of illustration. Finally, we propose different criteria for comparison of different sampling schemes in order to obtain the optimal sampling scheme.
引用
收藏
页码:509 / 533
页数:25
相关论文
共 50 条
  • [21] Estimation and Prediction for Flexible Weibull Distribution Based on Progressive Type II Censored Data
    O. M. Bdair
    R. R. Abu Awwad
    G. K. Abufoudeh
    M. F. M. Naser
    [J]. Communications in Mathematics and Statistics, 2020, 8 : 255 - 277
  • [22] Bayesian estimation of gumbel type-ii distribution
    Abbas, Kamran
    Fu, Jiayu
    Tang, Yincai
    [J]. Data Science Journal, 2013, 12 : 33 - 46
  • [23] A New Rayleigh Distribution: Properties and Estimation Based on Progressive Type-II Censored Data with an Application
    Algarni, Ali
    Almarashi, Abdullah M.
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2022, 130 (01): : 379 - 396
  • [24] Bayesian Estimation of Parameter For Different Loss Functions Using Progressive Type-II Censored Data
    Kumar, Pradip
    Kumar, Pawan
    Kumar, Dinesh
    Singh, Sanjay Kumar
    Singh, Umesh
    [J]. ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2023, 16 (03) : 519 - 540
  • [25] Estimation and Prediction for the Poisson-Exponential Distribution Based on Type-II Censored Data
    Arabi Belaghi, R.
    Noori Asl, Mehri
    Gurunlu Alma, Ozlem
    Singh, Sukhdev
    Vasfi, Mahdi
    [J]. American Journal of Mathematical and Management Sciences, 2019, 38 (01) : 96 - 115
  • [26] Statistical Inference Under Step Stress Partially Accelerated Life Testing for Adaptive Type-II Progressive Hybrid Censored Data
    Kamal, Mustafa
    Rahman, Ahmadur
    Zarrin, Shazia
    Kausar, Haneefa
    [J]. JOURNAL OF RELIABILITY AND STATISTICAL STUDIES, 2021, 14 (02): : 585 - 614
  • [27] Reliability estimation in Maxwell distribution with Type-II censored data
    Krishna, Hare
    Malik, Manish
    [J]. INTERNATIONAL JOURNAL OF QUALITY & RELIABILITY MANAGEMENT, 2009, 26 (02) : 184 - +
  • [28] Estimation for Parameters of Life of the Marshall-Olkin Generalized-Exponential Distribution Using Progressive Type-II Censored Data
    Elshahhat, Ahmed
    Muse, Abdisalam Hassan
    Egeh, Omer Mohamed
    Elemary, Berihan R.
    [J]. COMPLEXITY, 2022, 2022
  • [29] Bayesian prediction of unobserved values for Type-II censored data
    Kubota, Tatsuya
    Kurosawa, Takeshi
    [J]. JOURNAL OF APPLIED STATISTICS, 2017, 44 (07) : 1165 - 1180
  • [30] Stress-strength reliability of exponentiated Frechet distributions based on Type-II censored data
    Nadeb, Hossein
    Torabi, Hamzeh
    Zhao, Yichuan
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2019, 89 (10) : 1863 - 1876