A science-based mixed oxide property model for developing advanced oxide nuclear fuels

被引:2
|
作者
Kato, Masato [1 ,2 ,3 ,4 ]
Oki, Takumi [2 ]
Watanabe, Masashi [1 ,2 ,3 ,4 ]
Hirooka, Shun [2 ,3 ]
Vauchy, Romain [2 ]
Ozawa, Takayuki [2 ,3 ]
Uwaba, Tomoyuki [4 ]
Ikusawa, Yoshihisa [2 ]
Nakamura, Hiroki [5 ]
Machida, Masahiko [5 ]
机构
[1] Japan Atom Energy Agcy, Nucl Plant Innovat Promot Off, Oarai, Ibaraki 3111393, Japan
[2] Japan Atom Energy Agcy, Fuel Engn Dept, Plutonium Fuel Dev Ctr, Tokai, Japan
[3] Japan Atom Energy Agcy, Fuel Cycle Design Off, Oarai, Japan
[4] Japan Atom Energy Agcy, Fuels & Mat Dept, Oarai Res & Dev Ctr, Oarai, Japan
[5] Japan Atom Energy Agcy, Ctr Computat Sci & Esyst, Kashiwa, Japan
关键词
Bredig transition; electronic conduction; MOX fuel; phonon conduction; physical property; plutonium; ELECTRICAL-CONDUCTIVITY; THERMAL-CONDUCTIVITY; THERMOPHYSICAL PROPERTIES; HIGH-TEMPERATURES; (U; PU; PLUTONIA; URANIA; UO2;
D O I
10.1111/jace.19609
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Herein, a science-based uranium and plutonium mixed oxide (MOX) property model is derived for determining the properties of MOX fuel and analyzing their performance as functions of Pu content, minor-actinide content, oxygen-to-metal ratio, and temperature. The property model is constructed by evaluating the effect of phonons and electronic defects on the heat capacity and thermal conductivity of MOX fuels. The effect of phonons was evaluated based on experimental datasets related to lattice parameters, thermal expansion, and sound speeds. Moreover, the effect of electronic defects was determined by analyzing oxygen-potential data based on defect chemistry. Furthermore, the model evaluated the effect of the Bredig transition on the thermal properties of MOX fuel by analyzing the irradiation test results. The derived property model is applied to the performance code to analyze fast reactor fuel pins.
引用
收藏
页码:2998 / 3011
页数:14
相关论文
共 50 条
  • [21] THERMODYNAMICS OF MIXED-OXIDE REACTOR-FUELS
    CATLOW, CRA
    JOURNAL OF NUCLEAR MATERIALS, 1977, 67 (1-2) : 236 - 238
  • [22] Antineutrino monitoring of burning mixed oxide plutonium fuels
    Hayes, A. C.
    Trellue, H. R.
    Nieto, Michael Martin
    Wilson, W. B.
    PHYSICAL REVIEW C, 2012, 85 (02):
  • [23] EFFECT OF OXYGEN ON SWELLING OF MIXED-OXIDE FUELS
    PLUMLEE, DE
    BOHABOY, PE
    CRAIG, CN
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1973, 17 (NOV): : 197 - 198
  • [24] Oxygen potentials of mixed oxide fuels for fast reactors
    Kato, M.
    Tamura, T.
    Konashi, K.
    JOURNAL OF NUCLEAR MATERIALS, 2009, 385 (02) : 419 - 423
  • [25] MODERATION CONTROL FOR PROCESSING MIXED-OXIDE FUELS
    ERNST, B
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1974, 18 (JUN23): : 167 - 168
  • [26] COMPUTER INVESTIGATION OF DOPPLER DELAY IN MIXED OXIDE FUELS
    GUSTAFSON, VW
    PETERSON, RE
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1964, 7 (02): : 275 - &
  • [27] SIMULATING PERFORMANCE OF MIXED OXIDE FUELS WITH HYBRID COMPUTER
    LEGGETT, RD
    BALLARD, EO
    COLE, CR
    AMERICAN CERAMIC SOCIETY BULLETIN, 1970, 49 (04): : 452 - &
  • [28] EVALUATION OF RADIAL TEMPERATURE DISTRIBUTION IN MIXED OXIDE FUELS
    Roman, Mihaela-Roxana
    Ionescu, Victor Dragos
    Olteanu, Gheorghe
    Prisecaru, Ilie
    2019 INTERNATIONAL CONFERENCE ON ENERGY AND ENVIRONMENT (CIEM), 2019, : 109 - 112
  • [29] ACTINIDE REDISTRIBUTION IN MIXED-OXIDE FUELS - COMMENT
    MEYER, RO
    JOURNAL OF NUCLEAR MATERIALS, 1974, 52 (02) : 326 - 328
  • [30] New approaches to processing and fabrication of oxide nuclear fuels
    Yu. M. Kulyako
    T. I. Trofimov
    E. G. Il’in
    B. F. Myasoedov
    Russian Journal of General Chemistry, 2011, 81 : 1960 - 1965