Capturing the form of feature interactions in black-box models

被引:0
|
作者
Zhang, Hanying [1 ,2 ]
Zhang, Xiaohang [1 ,2 ]
Zhang, Tianbo [3 ]
Zhu, Ji [4 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Econ & Management, Beijing, Peoples R China
[2] Beijing Univ Posts & Telecommun, Key Lab Trustworthy Distributed Comp & Serv, Beijing, Peoples R China
[3] Univ Washington, Dept Math, Seattle, WA USA
[4] Univ Michigan, Dept Stat, Ann Arbor, MI USA
基金
中国国家自然科学基金;
关键词
Model interpretation; Feature interaction; Product separability; Black-box; PERFORMANCE; FIND;
D O I
10.1016/j.ipm.2023.103373
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Detecting feature interactions is an important post-hoc method to explain black-box models. The literature on feature interactions mainly focus on detecting their existence and calculating their strength. Little attention has been given to the form how the features interact. In this paper, we propose a novel method to capture the form of feature interactions. First, the feature interaction sets in black-box models are detected by the high dimensional model representation-based method. Second, the pairwise separability of the detected feature interactions is determined by a novel model which is verified theoretically. Third, the set separability of the feature interactions is inferred based on pairwise separability. Fourth, the interaction form of each feature in product separable sets is explored. The proposed method not only provides detailed information about the internal structure of black-box models but also improves the performance of linear models by incorporating the appropriate feature interactions. The experimental results show that the accuracy of recognizing product separability in synthetic models is 100%. Experiments on three regression and three classification tasks demonstrate that the proposed method can capture the product separable form of feature interactions effectively and improve the prediction accuracy greatly.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] THE BLACK-BOX
    WISEMAN, J
    ECONOMIC JOURNAL, 1991, 101 (404): : 149 - 155
  • [22] Black-box Adversarial Attacks on Video Recognition Models
    Jiang, Linxi
    Ma, Xingjun
    Chen, Shaoxiang
    Bailey, James
    Jiang, Yu-Gang
    PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, : 864 - 872
  • [23] Black-Box Test Generation from Inferred Models
    Papadopoulos, Petros
    Walkinshaw, Neil
    2015 IEEE/ACM FOURTH INTERNATIONAL WORKSHOP ON REALIZING ARTIFICIAL INTELLIGENCE SYNERGIES IN SOFTWARE ENGINEERING (RAISE 2015), 2015, : 19 - 24
  • [24] On the Impossibility of Virtual Black-Box Obfuscation in Idealized Models
    Mahmoody, Mohammad
    Mohammed, Ameer
    Nematihaji, Soheil
    THEORY OF CRYPTOGRAPHY, TCC 2016-A, PT I, 2016, 9562 : 18 - 48
  • [25] Explainable AI: To Reveal the Logic of Black-Box Models
    Chinu, Urvashi
    Bansal, Urvashi
    NEW GENERATION COMPUTING, 2024, 42 (01) : 53 - 87
  • [26] One Max in Black-Box Models with Several Restrictions
    Doerr, Carola
    Lengler, Johannes
    GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2015, : 1431 - 1438
  • [27] Fusing Independent Inferential Models in a Black-Box Manner
    Cella, Leonardo
    BELIEF FUNCTIONS: THEORY AND APPLICATIONS, BELIEF 2024, 2024, 14909 : 189 - 196
  • [28] THE MATHEMATICAL WORLD IN THE BLACK-BOX - SIGNIFICANCE OF THE BLACK-BOX AS A MEDIUM OF MATHEMATIZING
    MAASS, J
    SCHLOGLMANN, W
    CYBERNETICS AND SYSTEMS, 1988, 19 (04) : 295 - 309
  • [29] Learning outside the Black-Box: The pursuit of interpretable models
    Crabbe, Jonathan
    Zhang, Yao
    Zame, William R.
    van der Schaar, Mihaela
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [30] Explainable Debugger for Black-box Machine Learning Models
    Rasouli, Peyman
    Yu, Ingrid Chieh
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,