Stain-Independent Deep Learning-Based Analysis of Digital Kidney Histopathology

被引:7
|
作者
Bouteldja, Nassim [1 ]
Hoelscher, David Laurin [1 ]
Klinkhammer, Barbara Mara [1 ]
Buelow, Roman David [1 ]
Lotz, Johannes [3 ]
Weiss, Nick [3 ]
Daniel, Christoph [4 ]
Amann, Kerstin [4 ]
Boor, Peter [1 ,2 ,5 ]
机构
[1] RWTH Aachen Univ Hosp, Inst Pathol, Aachen, Germany
[2] RWTH Aachen Univ Hosp, Dept Nephrol & Immunol, Aachen, Germany
[3] Fraunhofer Inst Digital Med MEVIS, Bremen, Germany
[4] Friedrich Alexander Univ Erlangen Nurnberg, Dept Nephropathol, Erlangen, Germany
[5] RWTH Aachen Univ Hosp, Inst Pathol, Pauwelsstr 30, D-52074 Aachen, Germany
来源
AMERICAN JOURNAL OF PATHOLOGY | 2023年 / 193卷 / 01期
基金
欧洲研究理事会;
关键词
D O I
10.1016/j.ajpath.2022.09.011
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Convolutional neural network (CNN)-based image analysis applications in digital pathology (eg, tissue segmentation) require a large amount of annotated data and are mostly trained and applicable on a single stain. Here, a novel concept based on stain augmentation is proposed to develop stain -independent CNNs requiring only one annotated stain. In this benchmark study on stain independence in digital pathology, this approach is comprehensively compared with state-of-the-art techniques including image registration and stain translation, and several modifications thereof. A previously developed CNN for segmentation of periodic acid-Schiff-stained kidney histology was used and applied to various immunohistochemical stainings. Stain augmentation showed very high performance in all evaluated stains and outperformed all other techniques in all structures and stains. Without the need for additional annotations, it enabled segmentation on immunohistochemical stainings with perfor-mance nearly comparable to that of the annotated periodic acid-Schiff stain and could further uphold performance on several held-out stains not seen during training. Herein, examples of how this framework can be applied for compartment-specific quantification of immunohistochemical stains for inflammation and fibrosis in animal models and patient biopsy specimens are presented. The results show that stain augmentation is a highly effective approach to enable stain-independent applications of deep-learning segmentation algorithms. This opens new possibilities for broad implementation in digital pathology.
引用
收藏
页码:73 / 83
页数:11
相关论文
共 50 条
  • [1] Stain-Independent Segmentation and Quantification of Kidney Histopathology Using Deep Learning
    Boor, Peter
    Hoelscher, David Laurin
    Klinkhammer, Barbara M.
    Buelow, Roman D.
    Lotz, Johannes
    Weiss, Nick
    Daniel, Christoph
    Amann, Kerstin U.
    Bouteldja, Nassim
    [J]. JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2022, 33 (11): : 207 - 207
  • [2] Deep Learning-Based Segmentation and Quantification in Experimental Kidney Histopathology
    Bouteldja, Nassim
    Klinkhammer, Barbara M.
    Buelow, Roman D.
    Droste, Patrick
    Otten, Simon W.
    Freifrau von Stillfried, Saskia
    Moellmann, Julia
    Sheehan, Susan M.
    Korstanje, Ron
    Menzel, Sylvia
    Bankhead, Peter
    Mietsch, Matthias
    Drummer, Charis
    Lehrke, Michael
    Kramann, Rafael
    Floege, Juergen
    Boor, Peter
    Merhof, Dorit
    [J]. JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2021, 32 (01): : 52 - 68
  • [3] DETAILED ANALYSIS OF MRI CONCORDANCE WITH PROSTATECTOMY HISTOPATHOLOGY USING DEEP LEARNING-BASED DIGITAL PATHOLOGY
    Hockman, Lukas
    Fan, Richard
    Schmidt, Bogdana
    Bhattacharya, Indrani
    Rusu, Mirabela
    Sonn, Geoffrey
    [J]. JOURNAL OF UROLOGY, 2021, 206 : E813 - E814
  • [4] An adaptive digital stain separation method for deep learning-based automatic cell profile counts
    Dave, Palak
    Alahmari, Saeed
    Goldgof, Dmitry
    Hall, Lawrence O.
    Morera, Hunter
    Mouton, Peter R.
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2021, 354
  • [5] Generative Adversarial Networks for Facilitating Stain-Independent Supervised and Unsupervised Segmentation: A Study on Kidney Histology
    Gadermayr, Michael
    Gupta, Laxmi
    Appel, Vitus
    Boor, Peter
    Klinkhammer, Barbara M.
    Merhof, Dorit
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (10) : 2293 - 2302
  • [6] A deep learning-based histopathology classifier for Focal Cortical Dysplasia
    Jörg Vorndran
    Christoph Neuner
    Roland Coras
    Lucas Hoffmann
    Simon Geffers
    Jonas Honke
    Jochen Herms
    Sigrun Roeber
    Hajo Hamer
    Sebastian Brandner
    Till Hartlieb
    Tom Pieper
    Manfred Kudernatsch
    Christian G. Bien
    Thilo Kalbhenn
    Matthias Simon
    Homa Adle-Biassette
    Jesús Cienfuegos
    Roberta Di Giacomo
    Rita Garbelli
    Hajime Miyata
    Angelika Mühlebner
    Savo Raicevic
    Tuomas Rauramaa
    Fabio Rogerio
    Ingmar Blümcke
    Samir Jabari
    [J]. Neural Computing and Applications, 2023, 35 : 12775 - 12792
  • [7] A deep learning-based histopathology classifier for focal cortical dysplasia
    Vorndran, J.
    Bluemcke, I.
    Jabari, S.
    [J]. BRAIN PATHOLOGY, 2023, 33
  • [8] Automated Deep Learning-Based Classification of Wilms Tumor Histopathology
    van der Kamp, Ananda
    de Bel, Thomas
    van Alst, Ludo
    Rutgers, Jikke
    van den Heuvel-Eibrink, Marry M.
    Mavinkurve-Groothuis, Annelies M. C.
    van der Laak, Jeroen
    de Krijger, Ronald R.
    [J]. CANCERS, 2023, 15 (09)
  • [9] A deep learning-based histopathology classifier for Focal Cortical Dysplasia
    Vorndran, Jorg
    Neuner, Christoph
    Coras, Roland
    Hoffmann, Lucas
    Geffers, Simon
    Honke, Jonas
    Herms, Jochen
    Roeber, Sigrun
    Hamer, Hajo
    Brandner, Sebastian
    Hartlieb, Till
    Pieper, Tom
    Kudernatsch, Manfred
    Bien, Christian G.
    Kalbhenn, Thilo
    Simon, Matthias
    Adle-Biassette, Homa
    Cienfuegos, Jesus
    Di Giacomo, Roberta
    Garbelli, Rita
    Miyata, Hajime
    Muhlebner, Angelika
    Raicevic, Savo
    Rauramaa, Tuomas
    Rogerio, Fabio
    Bluemcke, Ingmar
    Jabari, Samir
    [J]. NEURAL COMPUTING & APPLICATIONS, 2023, 35 (17): : 12775 - 12792
  • [10] Deep learning-based digital volume correlation
    Duan, Xiaocen
    Huang, Jianyong
    [J]. EXTREME MECHANICS LETTERS, 2022, 53