IMC-MDA: Prediction of miRNA-disease association based on induction matrix completion

被引:3
|
作者
Li, Zejun [1 ]
Zhang, Yuxiang [2 ]
Bai, Yuting [3 ]
Xie, Xiaohui [1 ]
Zeng, Lijun [1 ]
机构
[1] Hunan Inst Technol, Sch Comp & Informat Sci, Hengyang 412002, Peoples R China
[2] Zhengzhou Univ, Sch Comp & Artificial Intelligence, Zhengzhou 450001, Henan, Peoples R China
[3] Hunan Univ, Coll Informat Sci & Engn, Changsha 410082, Hunan, Peoples R China
基金
湖南省自然科学基金;
关键词
miRNA-disease; miRNAs; disease; matrix completion; directed acyclic graphs; MICRORNA; COVID-19; NETWORK; SIMILARITY; IMPACT;
D O I
10.3934/mbe.2023471
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
To comprehend the etiology and pathogenesis of many illnesses, it is essential to iden-tify disease-associated microRNAs (miRNAs). However, there are a number of challenges with cur-rent computational approaches, such as the lack of "negative samples", that is, confirmed irrelevant miRNA-disease pairs, and the poor performance in terms of predicting miRNAs related with "iso-lated diseases", i.e. illnesses with no known associated miRNAs, which presents the need for novel computational methods. In this study, for the purpose of predicting the connection between disease and miRNA, an inductive matrix completion model was designed, referred to as IMC-MDA. In the model of IMC-MDA, for each miRNA-disease pair, the predicted marks are calculated by combining the known miRNA-disease connection with the integrated disease similarities and miRNA similarities. Based on LOOCV, IMC-MDA had an AUC of 0.8034, which shows better performance than previous methods. Furthermore, experiments have validated the prediction of disease-related miRNAs for three major human diseases: colon cancer, kidney cancer, and lung cancer.
引用
收藏
页码:10659 / 10674
页数:16
相关论文
共 50 条
  • [41] GRMDA: Graph Regression for MiRNA-Disease Association Prediction
    Chen, Xing
    Yang, Jing-Ru
    Guan, Na-Na
    Li, Jian-Qiang
    FRONTIERS IN PHYSIOLOGY, 2018, 9
  • [42] Combined embedding model for MiRNA-disease association prediction
    Bailong Liu
    Xiaoyan Zhu
    Lei Zhang
    Zhizheng Liang
    Zhengwei Li
    BMC Bioinformatics, 22
  • [43] Combined embedding model for MiRNA-disease association prediction
    Liu, Bailong
    Zhu, Xiaoyan
    Zhang, Lei
    Liang, Zhizheng
    Li, Zhengwei
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [44] A novel computational model based on super-disease and miRNA for potential miRNA-disease association prediction
    Chen, Xing
    Jiang, Zhi-Chao
    Xie, Di
    Huang, De-Shuang
    Zhao, Qi
    Yan, Gui-Ying
    You, Zhu-Hong
    MOLECULAR BIOSYSTEMS, 2017, 13 (06) : 1202 - 1212
  • [45] MDMF: Predicting miRNA-Disease Association Based on Matrix Factorization with Disease Similarity Constraint
    Ha, Jihwan
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (06):
  • [46] MDAlmc: A Novel Low-rank Matrix Completion Model for MiRNA-Disease Association Prediction by Integrating Similarities among MiRNAs and Diseases
    Wang, Kun
    Xu, Junlin
    Tian, Geng
    Li, Yang
    Zeng, Xueying
    Yang, Jialiang
    CURRENT GENE THERAPY, 2023, 23 (04) : 316 - 327
  • [47] DEJKMDR: miRNA-disease association prediction method based on graph convolutional network
    Gao, Shiyuan
    Kuang, Zhufang
    Duan, Tao
    Deng, Lei
    FRONTIERS IN MEDICINE, 2023, 10
  • [48] A vector projection similarity-based method for miRNA-disease association prediction
    Xie, Guobo
    Xie, Weijie
    Gu, Guosheng
    Lin, Zhiyi
    Chen, Ruibin
    Liu, Shigang
    Yu, Junrui
    ANALYTICAL BIOCHEMISTRY, 2024, 687
  • [49] MEAHNE: miRNA-Disease Association Prediction Based on Semantic Information in a Heterogeneous Network
    Huang, Chen
    Cen, Keliang
    Zhang, Yang
    Liu, Bo
    Wang, Yadong
    Li, Junyi
    LIFE-BASEL, 2022, 12 (10):
  • [50] SGLMDA: A Subgraph Learning-Based Method for miRNA-Disease Association Prediction
    Ji, Cunmei
    Yu, Ning
    Wang, Yutian
    Ni, Jiancheng
    Zheng, Chunhou
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2024, 21 (05) : 1191 - 1201