Surface Phase Conversion in a High-Entropy Layered Oxide Cathode Material

被引:32
|
作者
Zheng, Qinfeng [1 ,2 ]
Ren, Zhouhong [1 ,2 ]
Zhang, Yixiao [1 ,2 ]
Qin, Tian [1 ,2 ]
Qi, Jizhen [3 ]
Jia, Huanhuan [1 ,2 ]
Jiang, Luozhen [4 ]
Li, Lina [4 ]
Liu, Xi [1 ,2 ]
Chen, Liwei [1 ,2 ,3 ,5 ]
机构
[1] Shanghai Jiao Tong Univ, Frontiers Sci Ctr Transformat Mol, Shanghai Electrochem Energy Device Res Ctr SEED, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Insitu Ctr Phys Sci, Shanghai 200240, Peoples R China
[3] Chinese Acad Sci, Suzhou Inst Nanotech & Nanob SINANO, i Lab, Suzhou 215123, Peoples R China
[4] Shanghai Adv Res Inst, Shanghai Synchrotron Radiat Facil, Shanghai 201210, Peoples R China
[5] Shanghai Jiao Tong Univ, Global Inst Future Technol, Solid State Battery Res Ctr, Shanghai 200240, Peoples R China
关键词
lithium-ion batteries; high-entropy layered oxides; cathode material; capacity fading; intercalation; mechanism; LITHIUM ION BATTERIES; THERMAL-STABILITY; OXYGEN VACANCIES; PERFORMANCE; LATTICE; LI1.2NI0.2MN0.6O2; DEGRADATION; LICOO2;
D O I
10.1021/acsami.2c16194
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
High-entropy transition-metal oxides are potentially interesting cathode materials for lithium-ion batteries, among which high-entropy layered oxides are considered highly promising because there exist two-dimensional ion transport channels that may, in principle, enable fast ion transport. However, high-entropy layered oxides reported to date exhibit fast capacity fading in initial cycles and thus are hardly of any practical value. Here, we investigate the structural and property changes of a five-element layered oxide, LiNi0.2Co0.2Mn0.2Fe0.2Al0.2O2, using electrochemical and physical character-ization techniques. It is revealed that the M3O4 phase formed at the surface of LiNi0.2Co0.2Mn0.2Fe0.2Al0.2O2 due to the migration of metal ions from octahedral sites of the transition-metal layer to tetrahedral 8a and octahedral sites of the lithium layer hinders the intercalation of lithium ion, which leads to the low initial Coulombic efficiency and fast decay of reversible capacity. This mechanism could be generally applicable to other high-entropy layered oxides with different elemental compositions.
引用
收藏
页码:4643 / 4651
页数:9
相关论文
共 50 条
  • [31] A high-entropy layered P2-type cathode with high stability for sodium-ion batteries
    Liu, Hongfeng
    Wang, Yingshuai
    Ding, Xiangyu
    Wang, Yusong
    Wu, Feng
    Gao, Hongcai
    SUSTAINABLE ENERGY & FUELS, 2024, 8 (06) : 1304 - 1313
  • [32] High-entropy doping for high-performance zero-cobalt high-nickel layered cathode materials
    Zhou, Jiahui
    Hu, Jiehui
    Zhou, Xia
    Shang, Zhen
    Yang, Yue
    Xu, Shengming
    ENERGY & ENVIRONMENTAL SCIENCE, 2025, 18 (01) : 347 - 353
  • [33] Overview of high-entropy oxide ceramics
    Jiao, Yitao
    Dai, Jian
    Fan, Zhenhao
    Cheng, Junye
    Zheng, Guangping
    Grema, Lawan
    Zhong, Junwen
    Li, Hai-Feng
    Wang, Dawei
    MATERIALS TODAY, 2024, 77 : 92 - 117
  • [34] High-entropy oxides as photocatalysts for organic conversion
    Li, Mingjin
    Mei, Shuxing
    Zheng, Yong
    Wang, Long
    Ye, Liqun
    CHEMICAL COMMUNICATIONS, 2023, 59 (90) : 13478 - 13481
  • [35] P2-type layered high-entropy oxides as sodium-ion cathode materials
    Wang, Junbo
    Dreyer, Soeren L.
    Wang, Kai
    Ding, Ziming
    Diemant, Thomas
    Karkera, Guruprakash
    Ma, Yanjiao
    Sarkar, Abhishek
    Zhou, Bei
    Gorbunov, Mikhail, V
    Omar, Ahmad
    Mikhailova, Daria
    Presser, Volker
    Fichtner, Maximilian
    Hahn, Horst
    Brezesinski, Torsten
    Breitung, Ben
    Wang, Qingsong
    MATERIALS FUTURES, 2022, 1 (03):
  • [36] High-entropy oxides for energy storage and conversion
    Bao, Weizhai
    Shen, Hao
    Zhang, Yangyang
    Qian, Chengfei
    Zeng, Guozhao
    Jing, Kai
    Cui, Dingyu
    Xia, Jingjie
    Liu, He
    Guo, Cong
    Yu, Feng
    Sun, Kaiwen
    Li, Jingfa
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (35) : 23179 - 23201
  • [37] Layered-Structured Sodium-Ion Cathode Materials: Advancements through High-Entropy Approaches
    Dong, Yutao
    Zhou, Zihao
    Ma, Yuan
    Zhang, Hehe
    Meng, Fanbo
    Wu, Yuping
    Ma, Yanjiao
    ACS ENERGY LETTERS, 2024, 9 (10): : 5096 - 5119
  • [38] Phase Engineering of High-Entropy Alloys
    Chang, Xuejiao
    Zeng, Mengqi
    Liu, Keli
    Fu, Lei
    ADVANCED MATERIALS, 2020, 32 (14)
  • [39] Synthesis and ionic conductivity of a high-entropy layered hydroxide
    Miura, Akira
    Ishiyama, Sho
    Kubo, Daiju
    Rosero-Navarro, Nataly Carolina
    Tadanaga, Kiyoharu
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2020, 128 (07) : 336 - 339
  • [40] A novel high-entropy layered cathode with a robust structure and fast dynamics at high rates for Na-ion batteries
    Cao, Minghui
    Cui, Miao
    Gong, Yiping
    Guo, Zewei
    Le, Shuangqing
    Tian, Jingyang
    Jiang, Yuanping
    Shadike, Zulipiya
    Lin, Chong
    SUSTAINABLE ENERGY & FUELS, 2025, 9 (04): : 1062 - 1072