Effect of gut microbiota-derived metabolites and extracellular vesicles on neurodegenerative disease in a gut-brain axis chip

被引:6
|
作者
Kim, Na Yeon [1 ]
Lee, Ho Yeon [1 ]
Choi, Yoon Young [2 ]
Mo, Sung Jun [3 ]
Jeon, Soomin [3 ]
Ha, Jang Ho [4 ]
Park, Soo Dong [3 ]
Shim, Jae-Jung [3 ]
Lee, Jaehwan [3 ]
Chung, Bong Geun [1 ,2 ,4 ,5 ]
机构
[1] Sogang Univ, Dept Biomed Engn, Seoul, South Korea
[2] Sogang Univ, Inst Integrated Biotechnol, Seoul, South Korea
[3] Hy Co Ltd, R&BD Ctr, Yongin, South Korea
[4] Sogang Univ, Dept Mech Engn, Seoul, South Korea
[5] Sogang Univ, Inst Smart Biosensor, Seoul, South Korea
关键词
Gut-brain axis chip; Human iPSCs; Neural differentiation; Metabolites; Extracellular vesicles; Exosome; Neurodegenerative disease; ALZHEIMERS-DISEASE; STEM-CELLS; INFLAMMATION; EXPRESSION; NEURONS; GAP-43; NEUROINFLAMMATION; NEUROGENESIS; MATURATION; HYPOTHESIS;
D O I
10.1186/s40580-024-00413-w
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A new perspective suggests that a dynamic bidirectional communication system, often referred to as the microbiome-gut-brain axis, exists among the gut, its microbiome, and the central nervous system (CNS). This system may influence brain health and various brain-related diseases, especially in the realms of neurodevelopmental and neurodegenerative conditions. However, the exact mechanism is not yet understood. Metabolites or extracellular vesicles derived from microbes in the gut have the capacity to traverse the intestinal epithelial barrier or blood-brain barrier, gaining access to the systemic circulation. This phenomenon can initiate the physiological responses that directly or indirectly impact the CNS and its function. However, reliable and controllable tools are required to demonstrate the causal effects of gut microbial-derived substances on neurogenesis and neurodegenerative diseases. The integration of microfluidics enhances scientific research by providing advanced in vitro engineering models. In this study, we investigated the impact of microbe-derived metabolites and exosomes on neurodevelopment and neurodegenerative disorders using human induced pluripotent stem cells (iPSCs)-derived neurons in a gut-brain axis chip. While strain-specific, our findings indicate that both microbial-derived metabolites and exosomes exert the significant effects on neural growth, maturation, and synaptic plasticity. Therefore, our results suggest that metabolites and exosomes derived from microbes hold promise as potential candidates and strategies for addressing neurodevelopmental and neurodegenerative disorders.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] The impact of gut microbiota-derived metabolites in tumorigenesis
    Fukuda, Shinji
    CANCER SCIENCE, 2018, 109 : 631 - 631
  • [22] Organ-on-a-Chip for Studying Gut-Brain Interaction Mediated by Extracellular Vesicles in the Gut Microenvironment
    Kim, Min-Hyeok
    van Noort, Danny
    Sung, Jong Hwan
    Park, Sungsu
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (24)
  • [23] The role of gut microbiota in depression: an analysis of the gut-brain axis
    Irum, Natasha
    Afzal, Tayyeba
    Faraz, Muhammad Hamid
    Aslam, Zeeshan
    Rasheed, Faisal
    FRONTIERS IN BEHAVIORAL NEUROSCIENCE, 2023, 17
  • [24] How Microbiota-Derived Metabolites Link the Gut to the Brain during Neuroinflammation
    Rebeaud, Jessica
    Peter, Benjamin
    Pot, Caroline
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (17)
  • [25] Unravelling the gut hypothesis of heart failure with gut microbiota-derived metabolites
    Kok, Wouter E.
    EUROPEAN JOURNAL OF HEART FAILURE, 2024, 26 (02) : 242 - 244
  • [26] Gut microbiota, microbiota-derived metabolites, and graft-versus-host disease
    Yue, XiaoYan
    Zhou, Hongyu
    Wang, ShuFen
    Chen, Xu
    Xiao, HaoWen
    CANCER MEDICINE, 2024, 13 (03):
  • [27] Gut Microbiota-Derived Tryptophan Metabolites Maintain Gut and Systemic Homeostasis
    Su, Xiaomin
    Gao, Yunhuan
    Yang, Rongcun
    CELLS, 2022, 11 (15)
  • [28] Messengers From the Gut: Gut Microbiota-Derived Metabolites on Host Regulation
    Li, Chenyu
    Liang, Yaquan
    Qiao, Yuan
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [29] Gut-brain signaling in energy homeostasis: the unexpected role of microbiota-derived succinate
    de Vadder, Filipe
    Mithieux, Gilles
    JOURNAL OF ENDOCRINOLOGY, 2018, 236 (02) : R105 - R108
  • [30] From gut microbiota to host appetite: gut microbiota-derived metabolites as key regulators
    Han, Hui
    Yi, Bao
    Zhong, Ruqing
    Wang, Mengyu
    Zhang, Shunfen
    Ma, Jie
    Yin, Yulong
    Yin, Jie
    Chen, Liang
    Zhang, Hongfu
    MICROBIOME, 2021, 9 (01)