Morphology-based deep learning enables accurate detection of senescence in mesenchymal stem cell cultures

被引:8
|
作者
He, Liangge [1 ,2 ]
Li, Mingzhu [1 ]
Wang, Xinglie [1 ]
Wu, Xiaoyan [3 ]
Yue, Guanghui [1 ]
Wang, Tianfu [1 ]
Zhou, Yan [2 ,4 ]
Lei, Baiying [1 ]
Zhou, Guangqian [2 ]
机构
[1] Shenzhen Univ, Med Sch, Sch Biomed Engn, Guangdong Key Lab Biomed Measurements & Ultrasound, 1066 Xueyuan Ave, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Med Sch, Dept Med Cell Biol & Genet, Shenzhen Key Lab Antiaging & Regenerat Med,Shenzhe, Shenzhen 518060, Peoples R China
[3] Shenzhen Univ, Affiliated Hosp 1, Shenzhen Peoples Hosp 2, Shenzhen Inst Translat Med,Dept Dermatol, Shenzhen 518035, Peoples R China
[4] Lungene Biotech Ltd, Shenzhen 18000, Peoples R China
基金
中国国家自然科学基金;
关键词
Mesenchymal stem cells; Senescence; Deep learning; Morphology; STROMAL CELLS; CANCER;
D O I
10.1186/s12915-023-01780-2
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
BackgroundCell senescence is a sign of aging and plays a significant role in the pathogenesis of age-related disorders. For cell therapy, senescence may compromise the quality and efficacy of cells, posing potential safety risks. Mesenchymal stem cells (MSCs) are currently undergoing extensive research for cell therapy, thus necessitating the development of effective methods to evaluate senescence. Senescent MSCs exhibit distinctive morphology that can be used for detection. However, morphological assessment during MSC production is often subjective and uncertain. New tools are required for the reliable evaluation of senescent single cells on a large scale in live imaging of MSCs.ResultsWe have developed a successful morphology-based Cascade region-based convolution neural network (Cascade R-CNN) system for detecting senescent MSCs, which can automatically locate single cells of different sizes and shapes in multicellular images and assess their senescence state. Additionally, we tested the applicability of the Cascade R-CNN system for MSC senescence and examined the correlation between morphological changes with other senescence indicators.ConclusionsThis deep learning has been applied for the first time to detect senescent MSCs, showing promising performance in both chronic and acute MSC senescence. The system can be a labor-saving and cost-effective option for screening MSC culture conditions and anti-aging drugs, as well as providing a powerful tool for non-invasive and real-time morphological image analysis integrated into cell production.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] msQSM: Morphology-based self-supervised deep learning for quantitative susceptibility mapping
    He, Junjie
    Peng, Yunsong
    Fu, Bangkang
    Zhu, Yuemin
    Wang, Lihui
    Wang, Rongpin
    NEUROIMAGE, 2023, 275
  • [22] Morphology-Based Mammalian Stem Cell Tests Reveal Potential Developmental Toxicity of Donepezil
    Lau, Caroline G. Y.
    Marikawa, Yusuke
    MOLECULAR REPRODUCTION AND DEVELOPMENT, 2014, 81 (11) : 994 - 1008
  • [23] Wrist band photoplethysmography pulse morphology-based autocorrelation analysis enables atrial fibrillation detection without the need of pulse detection
    Valiaho, E. -S.
    Kuoppa, P.
    Lipponen, J. A.
    Martikainen, T. J.
    Jantti, H.
    Rissanen, T. T.
    Kolk, I.
    Castren, M.
    Halonen, J.
    Tarvainen, M. P.
    Hartikainen, J. E. K.
    EUROPEAN HEART JOURNAL, 2019, 40 : 4137 - 4137
  • [24] Deep learning enables accurate alignment of single cell RNA-seq data
    Zhong, Yuanke
    Li, Jing
    Liu, Jie
    Zheng, Yan
    Shang, Xuequn
    Hu, Jialu
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 778 - 781
  • [25] Deep Learning Enables Accurate Automatic Sleep Staging Based on Ambulatory Forehead EEG
    Leino, Akseli
    Korkalainen, Henri
    Kalevo, Laura
    Nikkonen, Sami
    Kainulainen, Samu
    Ryan, Alexander
    Duce, Brett
    Sipila, Kirsi
    Ahlberg, Jari
    Sahlman, Johanna
    Miettinen, Tomi
    Westeren-Punnonen, Susanna
    Mervaala, Esa
    Toyras, Juha
    Myllymaa, Sami
    Leppanen, Timo
    Myllymaa, Katja
    IEEE ACCESS, 2022, 10 : 26554 - 26566
  • [26] DEEP LEARNING ENABLES ACCURATE AUTOMATIC SLEEP STAGING BASED ON AMBULATORY FOREHEAD EEG
    Leino, A.
    Korkalainen, H.
    Kalevo, L.
    Nikkonen, S.
    Kainulainen, S.
    Ryan, A.
    Duce, B.
    Sipila, K.
    Ahlberg, J.
    Sahlman, J.
    Miettinen, T.
    Westeren-Punnonen, S.
    Mervaala, E.
    Toyras, J.
    Myllymaa, S.
    Leppanen, T.
    Myllymaa, K.
    SLEEP MEDICINE, 2022, 100 : S293 - S294
  • [27] DEEP LEARNING ENABLES ACCURATE SLEEP STAGING BASED ON A SINGLE FRONTAL EEG CHANNEL
    Korkalainen, H.
    Aakko, J.
    Nikkonen, S.
    Kainulainen, S.
    Leino, A.
    Duce, B.
    Afara, I. O.
    Myllymaa, S.
    Toyras, J.
    Leppanen, T.
    SLEEP MEDICINE, 2019, 64 : S202 - S203
  • [28] Author Correction: COSMOS: a platform for real-time morphology-based, label-free cell sorting using deep learning
    Mahyar Salek
    Nianzhen Li
    Hou-Pu Chou
    Kiran Saini
    Andreja Jovic
    Kevin B. Jacobs
    Chassidy Johnson
    Vivian Lu
    Esther J. Lee
    Christina Chang
    Phuc Nguyen
    Jeanette Mei
    Krishna P. Pant
    Amy Y. Wong-Thai
    Quillan F. Smith
    Stephanie Huang
    Ryan Chow
    Janifer Cruz
    Jeff Walker
    Bryan Chan
    Thomas J. Musci
    Euan A. Ashley
    Maddison (Mahdokht) Masaeli
    Communications Biology, 6
  • [29] Senescence in Human Mesenchymal Stem Cells: Functional Changes and Implications in Stem Cell-Based Therapy
    Turinetto, Valentina
    Vitale, Emanuela
    Giachino, Claudia
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2016, 17 (07)
  • [30] UNRAVELING NOVEL MESENCHYMAL STEM CELL SENESCENCE PHENOTYPES BASED ON GENOMIC BIOMARKER STATUS
    Samsonraj, R.
    Ardana, I.
    CYTOTHERAPY, 2023, 25 (06) : S86 - S86