Nonlinear dynamic problems for 2D magnetoelastic waves

被引:0
|
作者
Priimenko, Viatcheslav [1 ]
Vishnevskii, Mikhail [2 ]
机构
[1] State Univ Norte Fluminense Darcy Ribeiro UENF, Lab Engn & Explorat Petr LENEP, Ave Amaral Peixoto, km 163, Ave Brenand, S-N, BR-27925535 Macae, RJ, Brazil
[2] State Univ Norte Fluminense Darcy Ribeiro UENF, Lab Math Sci LCMAT, Ave Alberto Lamego, 2000, Parque Calif, BR-28013602 Campos Dos Goytacazes, RJ, Brazil
关键词
2D magnetoelasticity; Nonlinear coupling; Mixed problem; Inverse source problem; Existence and uniqueness; BOUNDARY-VALUE-PROBLEM; MODEL;
D O I
10.1007/s00030-023-00887-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The propagation of magnetoelastic waves in a two-dimensional electroconductive elastic body is investigated. The waves are fully coupled through the nonlinear magnetoelastic effect. We prove the existence and uniqueness for both the forward problem and the inverse problem, which consists of identifying the unknown scalar time-dependent component in the body density force acting on the elastic body when some additional measurement is available.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] A Unique Continuation Result for a 2D System of Nonlinear Equations for Surface Waves
    Montes, Alex M. M.
    Cordoba, Ricardo
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2023, 54 (03):
  • [32] Interactions of fully nonlinear waves with submerged bodies by a 2D viscous NWT
    Tavassoli, A
    Kim, MH
    PROCEEDINGS OF THE ELEVENTH (2001) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, VOL III, 2001, : 354 - 360
  • [33] On 2D approximations for magnetoelastic non-magnetizable plates
    Rudnicki, Marek
    International journal of applied electromagnetics in materials, 1995, 6 (02): : 131 - 138
  • [34] ON 2D APPROXIMATIONS FOR MAGNETOELASTIC NON-MAGNETIZABLE PLATES
    RUDNICKI, M
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 1995, 6 (02): : 131 - 138
  • [35] Some variation calculus problems in dynamic games on 2D surfaces
    Melikyan, A
    Hovakimyan, N
    ICM MILLENNIUM LECTURES ON GAMES, 2003, : 287 - 296
  • [36] Nonlinear radiation damping of nuclear spin waves and magnetoelastic waves in antiferromagnets
    Andrienko, Alexander V.
    Safonov, Vladimir L.
    PHYSICAL REVIEW B, 2016, 93 (10)
  • [37] An efficient numerical method to solve the problems of 2D incompressible nonlinear elasticity
    Hassani, R.
    Ansari, R.
    Rouhi, H.
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2022, 34 (02) : 423 - 443
  • [38] An efficient numerical method to solve the problems of 2D incompressible nonlinear elasticity
    R. Hassani
    R. Ansari
    H. Rouhi
    Continuum Mechanics and Thermodynamics, 2022, 34 : 1 - 21
  • [39] An efficient optimization algorithm for nonlinear 2D fractional optimal control problems
    Moradikashkooli, A.
    Javadi, H. Haj Seyyed
    Jabbehdari, S.
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (06): : 7906 - 7930
  • [40] A characteristic difference method for 2D nonlinear convection-diffusion problems
    Yu, XJ
    Wu, YH
    NUMERICAL TREATMENT OF MULTIPHASE FLOWS IN POROUS MEDIA, 2000, 552 : 378 - 389