Elastomeric Polyesters in Cardiovascular Tissue Engineering and Organs-on-a-Chip

被引:11
|
作者
Okhovatian, Sargol [1 ,2 ]
Shakeri, Amid [1 ,2 ]
Huyer, Locke Davenport [3 ,4 ]
Radisic, Milica [1 ,2 ,5 ,6 ]
机构
[1] Univ Toronto, Inst Biomed Engn, Toronto, ON M5S 3G9, Canada
[2] Toronto Gen Res Inst, Toronto, ON M5G 2C4, Canada
[3] Dalhousie Univ, Fac Dent, Fac Med & Engn, Sch Biomed Engn,Dept Applied Oral Sci, Halifax, NS B3H 4R2, Canada
[4] Dalhousie Univ, Fac Med, Dept Microbiol & Immunol, Halifax, NS B3H 4R2, Canada
[5] Univ Toronto, Dept Chem Engn & Appl Chem, Toronto, ON M5S 3E5, Canada
[6] Univ Toronto, Terrence Donnelly Ctr Cellular & Biomol Res, Toronto, ON M5S 3E1, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大健康研究院; 美国国家卫生研究院;
关键词
POLY(GLYCEROL SEBACATE) SCAFFOLDS; IN-VITRO; MECHANICAL-PROPERTIES; CITRIC-ACID; SUBSTRATE STIFFNESS; CARDIAC PATCH; SUCCINATE-DEHYDROGENASE; BIOMEDICAL APPLICATIONS; MYOCARDIAL-INFARCTION; POLY(ETHYLENE GLYCOL);
D O I
10.1021/acs.biomac.3c00387
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cardiovascular tissue constructs provide unique design requirements due to their functional responses to substrate mechanical properties and cyclic stretching behavior of cardiac tissue that requires the use of durable elastic materials. Given the diversity of polyester synthesis approaches, an opportunity exists to develop a new class of biocompatible, elastic, and immunomodulatory cardiovascular polymers. Furthermore, elastomeric polyester materials have the capability to provide tailored biomechanical synergy with native tissue and hence reduce inflammatory response in vivo and better support tissue maturation in vitro. In this review, we highlight underlying chemistry and design strategies of polyester elastomers optimized for cardiac tissue scaffolds. The major advantages of these materials such as their tunable elasticity, desirable biodegradation, and potential for incorporation of bioactive compounds are further expanded. Unique fabrication methods using polyester materials such as micromolding, 3D stamping, electrospinning, laser ablation, and 3D printing are discussed. Moreover, applications of these biomaterials in cardiovascular organ-on-a-chip devices and patches are analyzed. Finally, we outline unaddressed challenges in the field that need further study to enable the impactful translation of soft polyesters to clinical applications.
引用
收藏
页码:4511 / 4531
页数:21
相关论文
共 50 条
  • [21] Advances in Hydrogels in Organoids and Organs-on-a-Chip
    Liu, Haitao
    Wang, Yaqing
    Cui, Kangli
    Guo, Yaqiong
    Zhang, Xu
    Qin, Jianhua
    ADVANCED MATERIALS, 2019, 31 (50)
  • [22] Evaluation of Tavakol et al.: Harnessing organs-on-a-chip to model tissue regeneration
    Abbasi S.
    Adoungotchodo A.
    Ansari U.
    Baghdadi M.
    Baral K.
    Bashth O.
    Braam M.
    Datzkiw D.
    Dierolf J.
    Feulner L.
    Hammond C.
    Helmi S.
    Huang K.
    Iworima D.G.
    Khelifi G.
    Kozlov A.M.
    Kum J.J.Y.
    Lelong E.I.J.
    Lithopoulos M.A.
    Luca E.
    Luo J.
    Lye K.
    Ma J.
    Monteiro V.
    Noort R.
    Pieters V.M.
    Pietroban A.
    Robb K.P.
    Sakata R.
    Sharma N.
    Sinha S.
    Spice D.
    Stankiewicz L.N.
    Wang H.
    Watters V.
    Zhang B.
    CELL STEM CELL, 2021, 28 (06) : 979 - 982
  • [23] Organs-on-a-chip as model systems for multifactorial musculoskeletal diseases
    Arrigoni, Chiara
    Lopa, Silvia
    Candrian, Christian
    Moretti, Matteo
    CURRENT OPINION IN BIOTECHNOLOGY, 2020, 63 (63) : 79 - 88
  • [24] The Application of Organs-on-a-Chip in Dental, Oral, and Craniofacial Research
    Huang, C.
    Sanaei, F.
    Verdurmen, W. P. R.
    Yang, F.
    Ji, W.
    Walboomers, X. F.
    JOURNAL OF DENTAL RESEARCH, 2023, 102 (04) : 364 - 375
  • [25] Scaling and systems biology for integrating multiple organs-on-a-chip
    Wikswo, John P.
    Curtis, Erica L.
    Eagleton, Zachary E.
    Evans, Brian C.
    Kole, Ayeeshik
    Hofmeister, Lucas H.
    Matloff, William J.
    LAB ON A CHIP, 2013, 13 (18) : 3496 - 3511
  • [26] Microfluidic Organs-on-a-Chip for Modeling Human Infectious Diseases
    Wang, Yaqing
    Wang, Peng
    Qin, Jianhua
    ACCOUNTS OF CHEMICAL RESEARCH, 2021, 54 (18) : 3550 - 3562
  • [27] Incorporating mechanical strain in organs-on-a-chip: Lung and skin
    Guenat, Olivier T.
    Berthiaume, Francois
    BIOMICROFLUIDICS, 2018, 12 (04):
  • [28] Editorial: Medical and Industrial Applications of Microfluidic-Based Cell/Tissue Culture and Organs-on-a-Chip
    Ramadan, Qasem
    Alberti, Massimo
    Dufva, Martin
    Tung, Yi-Chung
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2019, 7 (JUN)
  • [29] Clinically Relevant Tissue Scale Responses as New Readouts from Organs-on-a-Chip for Precision Medicine
    Guenat, Olivier T.
    Geiser, Thomas
    Berthiaume, Francois
    ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, VOL 13, 2020, 13 : 111 - 133
  • [30] Organs-on-a-Chip Module: A Review from the Development and Applications Perspective
    Sosa-Hernandez, Juan Eduardo
    Villalba-Rodriguez, Angel M.
    Romero-Castillo, Kenya D.
    Aguilar-Aguila-Isaias, Mauricio A.
    Garcia-Reyes, Isaac E.
    Hernandez-Antonio, Arturo
    Ahmed, Ishtiaq
    Sharma, Ashutosh
    Parra-Saldivar, Roberto
    Iqbal, Hafiz M. N.
    MICROMACHINES, 2018, 9 (10):