GPU-Accelerated 3D Normal Distributions Transform

被引:0
|
作者
Nguyen, Anh [1 ]
Cano, Abraham Monrroy [2 ]
Edahiro, Masato [1 ]
Kato, Shinpei [3 ]
机构
[1] Nagoya Univ, Grad Sch Informat, Furo Cho,Chikusa Ku, Nagoya 4648603, Japan
[2] Nagoya Univ, MAP IV Inc, Natl Innovat Complex 711,Furo Cho, Nagoya, Aichi 4640814, Japan
[3] Univ Tokyo, Grad Sch Informat Sci & Technol, Dept Comp Sci, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1138656, Japan
关键词
3D normal distributions transform; GPGPU; point cloud; autonomous driving systems; SLAM; SCAN REGISTRATION;
D O I
10.20965/jrm.2023.p0445
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
The three-dimensional (3D) normal distributions transform (NDT) is a popular scan registration method for 3D point cloud datasets. It has been widely used in sensor-based localization and mapping appli-cations. However, the NDT cannot entirely utilize the computing power of modern many-core processors, such as graphics processing units (GPUs), because of the NDT's linear nature. In this study, we investi-gated the use of NVIDIA's GPUs and their program-ming platform called compute unified device architec-ture (CUDA) to accelerate the NDT algorithm. We proposed a design and implementation of our GPU-accelerated 3D NDT (GPU NDT). Our methods can achieve a speedup rate of up to 34 times, compared with the NDT implemented in the point cloud library (PCL).
引用
收藏
页码:445 / 459
页数:15
相关论文
共 50 条
  • [21] Development of a GPU-accelerated 3D neutron dynamics code for PB-FHR
    E, Yanzhi
    Zou, Yang
    Guo, Wei
    Dai, Ye
    Xu, Hongjie
    NUCLEAR ENGINEERING AND DESIGN, 2017, 320 : 88 - 102
  • [22] GPU-accelerated 3D Bayesian image reconstruction from Compton scattered data
    Van-Giang Nguyen
    Lee, Soo-Jin
    Lee, Mi No
    PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (09): : 2817 - 2836
  • [23] GPU-Accelerated 3D Mesh Deformation for Optimization Based on the Finite Element Method
    Lamecki, Adam
    Dziekonski, Adam
    Balewski, Lukasz
    Fotyga, Grzegorz
    Mrozowski, Michal
    RADIOENGINEERING, 2017, 26 (04) : 924 - 929
  • [24] The Impact of 3D Stacking on GPU-Accelerated Deep Neural Networks: an Experimental Study
    Wahby, William
    Sarvey, Thomas
    Sharma, Hardik
    Esmaeilzadeh, Hadi
    Bakir, Muhannad S.
    2016 IEEE INTERNATIONAL 3D SYSTEMS INTEGRATION CONFERENCE (3DIC), 2016,
  • [25] A GPU-Accelerated Method for 3D Nonlinear Kelvin Ship Wake Patterns Simulation
    Sun, Xiaofeng
    Cai, Miaoyu
    Ding, Junchen
    APPLIED SCIENCES-BASEL, 2023, 13 (22):
  • [26] GPU-accelerated 3D volumetric X-ray-induced acoustic computed tomography
    Lee, Donghyun
    Park, Eun-Yeong
    Choi, Seongwook
    Kim, Hyeongsub
    Min, Jung-joon
    Lee, Changho
    Kim, Chulhong
    BIOMEDICAL OPTICS EXPRESS, 2020, 11 (02) : 752 - 761
  • [27] 3D Radiative Transfer for Exoplanet Atmospheres. gCMCRT: A GPU-accelerated MCRT Code
    Lee, Elspeth K. H.
    Wardenier, Joost P.
    Prinoth, Bibiana
    Parmentier, Vivien
    Grimm, Simon L.
    Baeyens, Robin
    Carone, Ludmila
    Christie, Duncan
    Deitrick, Russell
    Kitzmann, Daniel
    Mayne, Nathan
    Roman, Michael
    Thorsbro, Brian
    ASTROPHYSICAL JOURNAL, 2022, 929 (02):
  • [28] Research on GPU-accelerated algorithm in 3D finite difference neutron diffusion calculation method
    徐琪
    余纲林
    王侃
    孙嘉龙
    Nuclear Science and Techniques, 2014, 25 (01) : 61 - 65
  • [29] GPU-accelerated real-time 3D tracking for humanoid locomotion and stair climbing
    Michel, Philipp
    Chestnutt, Joel
    Kagami, Satoshi
    Nishiwaki, Koichi
    Kuffner, James
    Kanade, Takeo
    2007 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-9, 2007, : 469 - +
  • [30] GPU-accelerated Computation of 3D laser radar range imaging of arbitrary coarse targets
    Lin, Jiaxuan
    Wu, Zhensen
    Su, Xiang
    Wu, Jiaji
    Wang, Biao
    Cao, Yunhua
    PROCEEDINGS OF THE 2012 IEEE 18TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS 2012), 2012, : 868 - 872