Identification and Expression Analysis of the Isopentenyl Transferase (IPT) Gene Family under Lack of Nitrogen Stress in Oilseed (Brassica napus L.)

被引:2
|
作者
Chen, Jingdong [1 ]
Wan, Heping [1 ]
Zhu, Wenhui [2 ]
Dai, Xigang [1 ]
Yu, Yi [1 ]
Zeng, Changli [1 ]
机构
[1] Jianghan Univ, Coll Life Sci, Wuhan 430056, Peoples R China
[2] Fujian Agr & Forestry Univ, Coll Life Sci, Fuzhou 350002, Peoples R China
来源
PLANTS-BASEL | 2023年 / 12卷 / 11期
关键词
Brassica napus; IPT gene family; nitrogen; abiotic stress tolerance; EFFICIENCY; YIELD;
D O I
10.3390/plants12112166
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
BnIPT gene family members in Brassica napus and analyzing their expression under different exogenous hormones and abiotic stress treatments to provide a theoretical basis for clarifying their functions and molecular genetic mechanisms in nitrogen deficiency stress tolerance of B. napus. Using the Arabidopsis IPT protein as the seed sequence, combined with the IPT protein domain PF01715, 26 members of the BnIPT gene family were identified from the whole genome of the rape variety ZS11. Additionally, the physicochemical properties and structures, phylogenetic relationships, synteny relationships, protein-protein interaction network, and gene ontology enrichment were analyzed. Based on transcriptome data, the expression patterns of the BnIPT gene under different exogenous hormone and abiotic stress treatments were analyzed. We used the qPCR method to identify the relative expression level of BnIPT genes that may be related to the stress resistance of rapeseed in transcriptome analysis under normal nitrogen (N: 6 mmol center dot L-1) and nitrogen deficiency (N: 0) conditions and analyzed its effect on rapeseed under nitrogen deficiency stress role in tolerance. In response to nitrogen deficiency signals, the BnIPT gene showed a trend of up-regulation in shoots and down-regulation in roots, indicating that it may affect the process of nitrogen transport and redistribution to enhance the stress resistance of rapeseed to respond to the nitrogen deficiency stress. This study provides a theoretical basis for clarifying the function and molecular genetic mechanism of the BnIPT gene family in nitrogen deficiency stress tolerance in rape.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Screening of candidate gene responses to cadmium stress by RNA sequencing in oilseed rape (Brassica napus L.)
    Yiran Ding
    Hongju Jian
    Tengyue Wang
    Feifei Di
    Jia Wang
    Jiana Li
    Liezhao Liu
    [J]. Environmental Science and Pollution Research, 2018, 25 : 32433 - 32446
  • [22] Physiological and Biochemical Evaluation of Commercial Oilseed Rape (Brassica Napus L.) Cultivars Under Drought Stress
    Ahad Jamshidi Zinab
    Tahereh Hasanloo
    Amir Mohammad Naji
    Nasser Delangiz
    Salar Farhangi-Abriz
    Behnam Asgari Lajayer
    Arash Hemati
    Zahra-Sadat Shobbar
    Muhammad Farooq
    [J]. Gesunde Pflanzen, 2023, 75 : 847 - 860
  • [23] Comprehensive identification, characterization, and expression analysis of the MORF gene family in Brassica napus
    Xing, Jiani
    Zhang, Yayi
    Song, Wenjian
    Ali, Nadia Ahmed
    Su, Kexing
    Sun, Xingxing
    Sun, Yujia
    Jiang, Yizhou
    Zhao, Xiaobo
    [J]. BMC PLANT BIOLOGY, 2024, 24 (01):
  • [24] Yield analysis of winter oilseed rape (Brassica napus L.):: a review
    Diepenbrock, W
    [J]. FIELD CROPS RESEARCH, 2000, 67 (01) : 35 - 49
  • [25] Physiological and Biochemical Evaluation of Commercial Oilseed Rape (Brassica Napus L.) Cultivars Under Drought Stress
    Zinab, Ahad Jamshidi
    Hasanloo, Tahereh
    Naji, Amir Mohammad
    Delangiz, Nasser
    Farhangi-Abriz, Salar
    Lajayer, Behnam Asgari
    Hemati, Arash
    Shobbar, Zahra-Sadat
    Farooq, Muhammad
    [J]. GESUNDE PFLANZEN, 2023, 75 (04): : 847 - 860
  • [26] Genome-wide and transcriptome-wide identification of the APX gene family in rapeseed(Brassica napus L.) and their expression features under low temperature stress
    Xuan Sun
    Guomei Liu
    Lin Yao
    Chunfang Du
    [J]. Oil Crop Science, 2023, 8 (04) : 259 - 265
  • [27] Screening of candidate gene responses to cadmium stress by RNA sequencing in oilseed rape (Brassica napus L.)
    Ding, Yiran
    Jian, Hongju
    Wang, Tengyue
    Di, Feifei
    Wang, Jia
    Li, Jiana
    Liu, Liezhao
    [J]. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2018, 25 (32) : 32433 - 32446
  • [28] Identification, evolution and expression analyses of the whole genome-wide PEBP gene family in Brassica napus L.
    Li, Yanling
    Xiao, Lu
    Zhao, Zhi
    Zhao, Hongping
    Du, Dezhi
    [J]. BMC GENOMIC DATA, 2023, 24 (01):
  • [29] Life cycle and gene dispersal of oilseed rape volunteers (Brassica napus L.)
    Gruber, S
    Pekrun, C
    Claupein, W
    [J]. BCPC INTERNATIONAL CONGRESS CROP SCIENCE & TECHNOLOGY 2003, VOL 1 AND 2, CONGRESS PROCEEDINGS, 2003, : 1093 - 1098
  • [30] Identification, evolution and expression analyses of the whole genome-wide PEBP gene family in Brassica napus L.
    Yanling Li
    Lu Xiao
    Zhi Zhao
    Hongping Zhao
    Dezhi Du
    [J]. BMC Genomic Data, 24