MLGN: multi-scale local-global feature learning network for long-term series forecasting

被引:0
|
作者
Jiang, Maowei [1 ,2 ,3 ,4 ]
Wang, Kai [1 ,2 ,3 ]
Sun, Yue [1 ,2 ,3 ,4 ]
Chen, Wenbo [1 ,2 ,3 ,4 ]
Xia, Bingjie [1 ,2 ,3 ,4 ]
Li, Ruiqi [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Key Lab Networked Control Syst, Shenyang 110016, Peoples R China
[2] Chinese Acad Sci, Shenyang Inst Automation, Shenyang, Peoples R China
[3] Chinese Acad Sci, Inst Robot & Intelligent Mfg, Shenyang, Peoples R China
[4] Univ Chinese Acad Sci, Shenyang, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
time series forecasting; multi-sale; local-global feature extraction; deep learning; machine learning; long-term sequence forecasting;
D O I
10.1088/2632-2153/ad1436
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Although Transformer-based methods have achieved remarkable performance in the field of long-term series forecasting, they can be computationally expensive and lack the ability to specifically model local features as CNNs. CNN-based methods, such as temporal convolutional network (TCN), utilize convolutional filters to capture local temporal features. However, the intermediate layers of TCN suffer from a limited effective receptive field, which can result in the loss of temporal relations during global feature extraction.To solve the above problems, we propose to combine local features and global correlations to capture the overall view of time series (e.g. fluctuations, trends). To fully exploit the underlying information in the time series, a multi-scale branch structure is adopted to model different potential patterns separately. Each pattern is extracted using a combination of interactive learning convolution and causal frequency enhancement to capture both local features and global correlations. Furthermore, our proposed method,multi-scale local-global feature learning network (MLGN), achieves a time and memory complexity of O(L) and consistently achieve state-of-the-art results on six benchmark datasets. In comparision with previous best method Fedformer, MLGN yields 12.98% and 11.38% relative improvements for multivariate and univariate time series, respectively. Our code and data are available on Github at https://github.com/Zero-coder/MLGN.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] Multi-scale feature enhanced spatio-temporal learning for traffic flow forecasting
    Du, Shengdong
    Yang, Tao
    Teng, Fei
    Zhang, Junbo
    Li, Tianrui
    Zheng, Yu
    KNOWLEDGE-BASED SYSTEMS, 2024, 294
  • [42] Cross-Scale Attention for Long-Term Time Series Forecasting
    Wen, Liangjian
    Hu, Quan
    Guo, Cong
    Hu, Ao
    Zhang, Mingyi
    IEEE Signal Processing Letters, 2024, 31 : 2675 - 2679
  • [43] Multi-Scale Local Shape Analysis and Feature Selection in Machine Learning Applications
    Bendich, Paul
    Gasparovic, Ellen
    Harer, John
    Izmailov, Rauf
    Ness, Linda
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [44] A Hybrid Model for Long-Term Wind Power Forecasting Utilizing NWP Subsequence Correction and Multi-Scale Deep Learning Regression Methods
    Chang, Yu
    Yang, Han
    Chen, Yuxi
    Zhou, Mingrui
    Yang, Huabin
    Wang, Yan
    Zhang, Yanru
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2024, 15 (01) : 263 - 275
  • [45] Hierarchical attention network for multivariate time series long-term forecasting
    Bi, Hongjing
    Lu, Lilei
    Meng, Yizhen
    APPLIED INTELLIGENCE, 2023, 53 (05) : 5060 - 5071
  • [46] A Neural Network Scheme for Long-Term Forecasting of Chaotic Time Series
    Pilar Gómez-Gil
    Juan Manuel Ramírez-Cortes
    Saúl E. Pomares Hernández
    Vicente Alarcón-Aquino
    Neural Processing Letters, 2011, 33 : 215 - 233
  • [47] Hierarchical attention network for multivariate time series long-term forecasting
    Hongjing Bi
    Lilei Lu
    Yizhen Meng
    Applied Intelligence, 2023, 53 : 5060 - 5071
  • [48] A Neural Network Scheme for Long-Term Forecasting of Chaotic Time Series
    Gomez-Gil, Pilar
    Manuel Ramirez-Cortes, Juan
    Pomares Hernandez, Saul E.
    Alarcon-Aquino, Vicente
    NEURAL PROCESSING LETTERS, 2011, 33 (03) : 215 - 233
  • [49] Evolutionary Automated Machine Learning for Multi-Scale Decomposition and Forecasting of Sensor Time Series
    Sarafanov, Mikhail
    Pokrovskii, Valerii
    Nikitin, Nikolay O.
    2022 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2022,
  • [50] Multi-scale Feature Learning Network for Bearing fault Diagnosis with Information Fusion
    Luo, Shuyang
    Zhou, Qi
    2024 10TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND ROBOTIC, ICCAR 2024, 2024, : 191 - 196