Linear and nonlinear Dirichlet-Neumann methods in multiple subdomains for the Cahn-Hilliard equation

被引:3
|
作者
Garai, Gobinda [1 ]
Mandal, Bankim C. [1 ]
机构
[1] IIT Bhubaneswar, Sch Basic Sci, Bhubaneswar, India
关键词
Dirichlet-Neumann; Cahn-Hilliard equation; parallel computing; domain decomposition; convergence analysis; PHASE-FIELD MODEL; ENERGY; RELAXATION; SCHEME;
D O I
10.1080/00207160.2023.2266068
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose and present a non-overlapping substructuring-type iterative algorithm for the Cahn-Hilliard (CH) equation, which is a prototype for phase-field models. It is of great importance to develop efficient numerical methods for the CH equation, given the range of applicability of CH equation has. Here we present a formulation for the linear and non-linear Dirichlet-Neumann (DN) methods applied to the CH equation and study the convergence behaviour in one and two spatial dimensions in multiple subdomains. We show numerical experiments to illustrate our theoretical findings and effectiveness of the method.
引用
收藏
页码:2157 / 2183
页数:27
相关论文
共 50 条
  • [31] A Simple Benchmark Problem for the Numerical Methods of the Cahn-Hilliard Equation
    Li, Yibao
    Lee, Chaeyoung
    Wang, Jian
    Yoon, Sungha
    Park, Jintae
    Kim, Junseok
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2021, 2021
  • [32] A conservative nonlinear difference scheme for the viscous Cahn-Hilliard equation
    Choo S.M.
    Chung S.K.
    Journal of Applied Mathematics and Computing, 2004, 16 (1-2) : 53 - 68
  • [33] Pulled fronts in the Cahn-Hilliard equation
    Malomed, BA
    Frantzeskakis, DJ
    Nistazakis, HE
    Yannacopoulos, AN
    Kevrekidis, PG
    PHYSICS LETTERS A, 2002, 295 (5-6) : 267 - 272
  • [34] A Cahn-Hilliard equation with singular diffusion
    Schimperna, Giulio
    Pawlow, Irena
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (02) : 779 - 803
  • [35] Stationary solutions for the Cahn-Hilliard equation
    Wei, JC
    Winter, M
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (04): : 459 - 492
  • [36] Local Discontinuous Galerkin Methods for the Functionalized Cahn-Hilliard Equation
    Guo, Ruihan
    Xu, Yan
    Xu, Zhengfu
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 63 (03) : 913 - 937
  • [37] On large time-stepping methods for the Cahn-Hilliard equation
    He, Yinnian
    Liu, Yunxian
    Tang, Tao
    APPLIED NUMERICAL MATHEMATICS, 2007, 57 (5-7) : 616 - 628
  • [38] Convergence of solutions to Cahn-Hilliard equation
    Rybka, P
    Hoffmann, KH
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (5-6) : 1055 - 1077
  • [39] A nonlocal stochastic Cahn-Hilliard equation
    Cornalba, Federico
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 140 : 38 - 60
  • [40] Asymptotic limits of viscous Cahn-Hilliard equation with homogeneous Dirichlet boundary condition
    Kagawa, Keiichiro
    Otani, Mitsuharu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 512 (01)