Analysis of AISI 316L-Ti Graded Deposition Fabricated by Wire and Arc Additive Manufacturing

被引:1
|
作者
Tomar, Bunty [1 ]
Shiva, S. [1 ]
机构
[1] Indian Inst Technol Jammu, Lab Adv Mfg & Proc, Jammu 181221, Jammu & Kashmir, India
关键词
Wire arc additive manufacturing (WAAM); Cold metal transfer (CMT); Titanium; Stainless steel; Interface; Metals and alloys; STAINLESS-STEEL; TITANIUM; MICROSTRUCTURE; DIFFUSION; JOINTS; COPPER;
D O I
10.1007/s12666-023-03101-1
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Manufacturing of steel and titanium-based bimetallic material using cold metal transfer-based wire arc additive manufacturing (CMT-WAAM) is a novel exploration. It can be helpful in on-line repairing of dissolver tank piping in nuclear reactor power plants. In the present work, owing to the unique characteristic of lower heat input, CMT-WAAM was used for fabrication of AISI 316L-Ti graded structure on the AISI 316L substrate. The deposition shows apparent cracks and delamination at the bimetallic interface. The interface microstructure mainly consists of Fe-Ti intermetallic compounds (IMCs) of cellular and dendritic shapes and their boundaries were wetted by Cr-Ti IMCs. However, the cellular grains were fine and equiaxed and there was no evidence of presence of large columnar grains. EDS results show that the total graded region was of approx. 6 mm and Fe shows deeper penetration into Ti due to lesser requirement of activation energy. The presence of brittle IMC phases was also confirmed by the XRD analysis.
引用
收藏
页码:279 / 285
页数:7
相关论文
共 50 条
  • [41] Wire arc additive manufacturing of functionally graded material for marine risers
    Chandrasekaran, Srinivasan
    Hari, S.
    Amirthalingam, Murugaiyan
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 792
  • [42] Additive Manufacturing of AISI 316L Stainless Steel: A Review
    D'Andrea, Danilo
    METALS, 2023, 13 (08)
  • [43] Material extrusion additive manufacturing of AISI 316L pastes
    Hoffmann, Miguel
    Elwany, Alaa
    JOURNAL OF MANUFACTURING PROCESSES, 2023, 108 : 238 - 251
  • [44] Effect of Current Mode on Anisotropy of 316L Stainless Steel Wire Arc Additive Manufacturing
    Zhao, DongSheng
    Long, DaiFa
    Niu, TangRen
    Liu, YuJun
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2023, 33 (17) : 8728 - 8732
  • [45] Printability of multiwalled SS 316L by wire arc additive manufacturing route with tunable texture
    Chakkravarthy, V
    Jerome, S.
    MATERIALS LETTERS, 2020, 260
  • [46] Microstructure and properties of CuCrZr alloy fabricated by wire arc additive manufacturing
    Diao, Zhaowei
    Yang, Fei
    Xiong, Tao
    Chen, Lin
    Wu, Yifei
    Rong, Mingzhe
    MATERIALS LETTERS, 2023, 339
  • [47] Ti-containing 316L stainless steels with excellent tensile properties fabricated by directed energy deposition additive manufacturing
    Han, Soo Bin
    Lee, Yoon Sun
    Park, Sung Hyuk
    Song, Hyejin
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 862
  • [48] Study of mass transport in cold wire deposition for Wire Arc Additive Manufacturing
    Hejripour, Fatemeh
    Valentine, Daniel T.
    Aidun, Daryush K.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 125 : 471 - 484
  • [49] Numerical analysis on the effect of process parameters on deposition geometry in wire arc additive manufacturing
    Fan, Shilong
    Yang, Fei
    Zhu, Xiaonan
    Diao, Zhaowei
    Chen, Lin
    Rong, Mingzhe
    PLASMA SCIENCE & TECHNOLOGY, 2022, 24 (04)
  • [50] Numerical analysis on the effect of process parameters on deposition geometry in wire arc additive manufacturing
    樊世龙
    杨飞
    朱晓楠
    刁兆炜
    陈琳
    荣命哲
    Plasma Science and Technology, 2022, 24 (04) : 4 - 15