Multicrystalline Silicon Passivation by Hydrogen and Oxygen-Rich Porous Silicon Layer for Photovoltaic Cells Applications

被引:0
|
作者
Hamoudi, Aqeel Mohammed [1 ]
Choubani, Karim [2 ]
Ben Rabha, Mohamed [1 ]
机构
[1] Res & Technol Ctr Energy, Tunis, Tunisia
[2] Imam Mohammad Ibn Saud Islamic Univ, Coll Engn, Riyadh, Saudi Arabia
关键词
Multi crystalline silicon; Laser beam induced current; Vapor etching; Oxygen and hydrogen; Passivation; SOLAR-CELLS; CRYSTALLINE SILICON;
D O I
10.22068/ijmse.2908
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, we demonstrate the beneficial effect of introducing a superficial porous silicon layer on the electronic quality of multi-crystalline silicon for photovoltaic cell application. The porous silicon was prepared using an acid vapor etching-based method. The porous silicon layer rich in hydrogen and oxygen formed by vapor etching using an excellent passivating agent for the mc-Si surface. Laser beam-induced current (LBIC) analysis of the exponent parameter (n) and surface current mapping demonstrated that oxygen and hydrogen-rich porous silicon led to an excellent surface passivation with a strong electronic quality improvement of multi-crystalline silicon. It was found that the generated current of treated silicon by acid vapor etching-based method is 20 times greater than the reference substrate, owing to recombination centers passivation of the grains and grain boundaries (GBs); The actual study revealed an apparent decrease in the recombination velocity of the minority carrier as reflected by 25% decrease in the exponent parameter (n) of the LBIC versus X-position measurements. The results obtained for the prepared porous silicon in this study indicates its possible use in a more efficient photovoltaic cell applications.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [21] XPS and PL studies of porous silicon treated in water and oxygen-rich gases
    Kobeleva, SP
    Sergeeva, TG
    Leiferov, BM
    Ivanova, AL
    PHYSICA A, 1997, 241 (1-2): : 398 - 402
  • [22] Influence of dielectric passivation layer thickness on LeTID in multicrystalline silicon
    Varshney, Utkarshaa
    Abbott, Malcolm D.
    Liu, Shaoyang
    Chen, Daniel
    Kim, Moonyong
    Sen, Chandany
    Payne, David N. R.
    Wenham, Stuart R.
    Hoex, Bram
    Chan, Catherine
    2018 IEEE 7TH WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION (WCPEC) (A JOINT CONFERENCE OF 45TH IEEE PVSC, 28TH PVSEC & 34TH EU PVSEC), 2018, : 0363 - 0367
  • [23] Effects of hydrogen plasma on passivation and generation of defects in multicrystalline silicon
    Darwiche, S.
    Nikravech, M.
    Morvan, D.
    Amouroux, J.
    Ballutaud, D.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2007, 91 (2-3) : 195 - 200
  • [24] A study on the microstructure of oxygen-rich silicon oxynitride
    Dan, YP
    Yue, RF
    Wang, Y
    Yao, YZ
    Liu, LT
    FIBER OPTICS AND OPTOELECTRONICS FOR NETWORK APPLICATIONS, 2001, 4603 : 192 - 195
  • [25] Applications of Porous Silicon to Multicrystalline Silicon Solar Cell: State of the Art
    Levy-Clement, C.
    PITS AND PORES 5: A SYMPOSIUM IN HONOR OF DAVID LOCKWOOD, 2013, 50 (37): : 167 - 180
  • [26] Low dislocation density multicrystalline silicon for photovoltaic applications
    Häßler, C.
    Reisner, E.-U.
    Koch, W.
    Müller, A.
    Franke, D.
    Rettelbach, T.
    Solid State Phenomena, 1999, 67 : 447 - 452
  • [27] Low dislocation density multicrystalline silicon for photovoltaic applications
    Hässler, C
    Reisner, EU
    Koch, W
    Müller, A
    Franke, D
    Rettelbach, T
    SOLID STATE PHENOMENA, 1999, 67-8 : 447 - 452
  • [28] Enhancement of photovoltaic properties of multicrystalline silicon solar cells by combination of buried metallic contacts and thin porous silicon
    Ben Rabha, M.
    Bessais, B.
    SOLAR ENERGY, 2010, 84 (03) : 486 - 491
  • [29] OXYGEN PRECIPITATION AND THE GENERATION OF SECONDARY DEFECTS IN OXYGEN-RICH SILICON
    KIRSCHT, FG
    GAWORZEWSKI, P
    SCHMALZ, K
    BABANSKAJA, I
    ZAUMSEIL, P
    WINTER, U
    LECTURE NOTES IN PHYSICS, 1983, 175 : 140 - 147
  • [30] Porous silicon emitter concept applied to multicrystalline silicon solar cells
    CNRS, Meudon, France
    Thin Solid Films, 1-2 (291-295):