Terrain classification using mars raw images based on deep learning algorithms with application to wheeled planetary rovers

被引:4
|
作者
Guo, Junlong [1 ]
Zhang, Xingyang [1 ]
Dong, Yunpeng [1 ]
Xue, Zhao [1 ]
Huang, Bo [1 ]
机构
[1] Harbin Inst Technol, State Key Lab Robot & Syst, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Terrain classification; Deep convolutional neural network; Mars raw images; Wheeled planetary rover;
D O I
10.1016/j.jterra.2023.04.002
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Scene information plays a crucial role in motion control, attitude perception, and path planning for wheeled planetary rovers (WPRs). Terrain recognition is the fundamental component of scene recogni-tion. Due to the rich information, visual sensors are usually used in terrain classification. However, tele-operation delay prevents WPRs from using visual information efficiently. End-to-end learning method of deep learning (DL) that does not need complex image preprocessing was proposed to deal with this issue. This paper first built a terrain dataset (consists of loose sand, bedrock, small rock, large rock, and outcrop) using real Mars images to directly support You Only Look Once (YOLOv5) to test its performance on ter-rain classification. Because the capability of end-to-end training scheme is positively correlated with dataset, the performance of YOLOv5 can be significantly improved by exploiting orders of magnitude more data. The best combination of hyperparameters and models was achieved by slightly tuning YOLOv5, and data augmentation was also applied to optimize its accuracy. Furthermore, its performance was compared with two other end-to-end network architectures. Deep learning algorithms can be used in the future planetary exploration missions, such as WPRs autonomy improvement, traversability anal-ysis, and avoiding getting trapped.(c) 2023 ISTVS. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:33 / 38
页数:6
相关论文
共 50 条
  • [41] A deep learning based approach for classification of abdominal organs using ultrasound images
    Reddy, D. Santhosh
    Rajalakshmi, P.
    Mateen, M. A.
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2021, 41 (02) : 779 - 791
  • [42] Deep Learning Based Ocular Disease Classification using Retinal Fundus Images
    Shrivastava, Aman
    Kamble, Ravi
    Kulkarni, Sucheta
    Singh, Shivangi
    Hegde, Atul
    Kashikar, Rashmi
    Das, Taraprasad
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2021, 62 (11)
  • [43] Deep Learning Based Supervised Image Classification Using UAV Images for Forest Areas Classification
    Mohd Anul Haq
    Gazi Rahaman
    Prashant Baral
    Abhijit Ghosh
    Journal of the Indian Society of Remote Sensing, 2021, 49 : 601 - 606
  • [44] Efficient classification of the hyperspectral images using deep learning
    Simranjit Singh
    Singara Singh Kasana
    Multimedia Tools and Applications, 2018, 77 : 27061 - 27074
  • [45] Classification of Alzheimer's Disease Based on Deep Learning Using Medical Images
    Vega-Huerta, Hugo
    Pantoja-Pimentel, Kevin Renzo
    Jaimes, Sebastian Yimmy Quintanilla-
    Maquen-Nino, Gisella Luisa Elena
    De-La-Cruz-VdV, Percy
    Guerra-Grados, Luis
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2024, 20 (10) : 101 - 114
  • [46] Deep Learning Based Supervised Image Classification Using UAV Images for Forest Areas Classification
    Haq, Mohd Anul
    Rahaman, Gazi
    Baral, Prashant
    Ghosh, Abhijit
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2021, 49 (03) : 601 - 606
  • [47] Classification of Plant Seedling Images Using Deep Learning
    Alimboyong, Catherine R.
    Hernandez, Alexander A.
    Medina, Ruji P.
    PROCEEDINGS OF TENCON 2018 - 2018 IEEE REGION 10 CONFERENCE, 2018, : 1839 - 1844
  • [48] Object Classification Using Spectral Images and Deep Learning
    Lopez, Carlos
    Jacome, Roman
    Garcia, Hans
    Arguello, Henry
    2020 IEEE COLOMBIAN CONFERENCE ON APPLICATIONS OF COMPUTATIONAL INTELLIGENCE (IEEE COLCACI 2020), 2020,
  • [49] Medical images classification using deep learning: a survey
    Rakesh Kumar
    Pooja Kumbharkar
    Sandeep Vanam
    Sanjeev Sharma
    Multimedia Tools and Applications, 2024, 83 : 19683 - 19728
  • [50] Classification of cancer histology images using deep learning
    Xie, Weidong
    CANCER RESEARCH, 2019, 79 (13)