An R-R-type MYB transcription factor promotes non-climacteric pepper fruit carotenoid pigment biosynthesis

被引:27
|
作者
Song, Jiali [1 ]
Sun, Binmei [1 ]
Chen, Changming [1 ,2 ]
Ning, Zuoyang [1 ]
Zhang, Shuanglin [1 ]
Cai, Yutong [1 ]
Zheng, Xiongjie [3 ]
Cao, Bihao [1 ,2 ]
Chen, Guoju [1 ]
Jin, Dan [4 ]
Li, Bosheng [5 ]
Bian, Jianxin [5 ]
Lei, Jianjun [1 ,2 ]
He, Hang [5 ]
Zhu, Zhangsheng [1 ,2 ]
机构
[1] South China Agr Univ, Coll Hort, Key Lab Biol & Germplasm Enhancement Hort Crops So, Minist Agr & Rural Areas, Guangzhou 510642, Peoples R China
[2] Guangdong Lab Lingnan Modern Agr, Guangzhou 510642, Peoples R China
[3] King Abdullah Univ Sci & Technol KAUST, Ctr Desert Agr, Div Biol & Environm Sci & Engn, Thuwal 239556900, Saudi Arabia
[4] Southwest Univ, Biotechnol Res Ctr, Chongqing 401120, Peoples R China
[5] Peking Univ, Inst Adv Agr Sci, Weifang 261325, Peoples R China
来源
PLANT JOURNAL | 2023年 / 115卷 / 03期
基金
中国国家自然科学基金;
关键词
non-climacteric fruit; pepper; pigmentation; carotenoid; transcription factor; ABA; ABSCISIC-ACID; PHYTOENE-SYNTHASE; PROVIDES INSIGHTS; GENOME SEQUENCE; CAPSICUM; TOMATO; STRESS; EVOLUTION; ACCUMULATION; CHLOROPHYLL;
D O I
10.1111/tpj.16257
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Carotenoids are major accessory pigments in the chloroplast, and they also act as phytohormones and volatile compound precursors to influence plant development and confer characteristic colours, affecting both the aesthetic and nutritional value of fruits. Carotenoid pigmentation in ripening fruits is highly dependent on developmental trajectories. Transcription factors incorporate developmental and phytohormone signalling to regulate the biosynthesis process. By contrast to the well-established pathways regulating ripening-related carotenoid biosynthesis in climacteric fruit, carotenoid regulation in non-climacteric fruit is poorly understood. Capsanthin is the primary carotenoid of non-climacteric pepper (Capsicum) fruit; its biosynthesis is tightly associated with fruit ripening, and it confers red pigmentation to the ripening fruit. In the present study, using a coexpression analysis, we identified an R-R-type MYB transcription factor, DIVARICATA1, and demonstrated its role in capsanthin biosynthesis. DIVARICATA1 encodes a nucleus-localised protein that functions primarily as a transcriptional activator. Functional analyses showed that DIVARICATA1 positively regulates carotenoid biosynthetic gene (CBG) transcript levels and capsanthin levels by directly binding to and activating CBG promoter transcription. Furthermore, an association analysis revealed a significant positive association between DIVARICATA1 transcription level and capsanthin content. ABA promotes capsanthin biosynthesis in a DIVARICATA1-dependent manner. Comparative transcriptomic analysis of DIVARICATA1 in Solanaceae plants showed that its function likely differs among species. Moreover, the pepper DIVARICATA1 gene could be regulated by the ripening regulator MADS-RIN. The present study illustrates the transcriptional regulation of capsanthin biosynthesis and offers a target for breeding peppers with high red colour intensity.
引用
收藏
页码:724 / 741
页数:18
相关论文
共 50 条
  • [21] Alternative Splicing in the Anthocyanin Fruit Gene Encoding an R2R3 MYB Transcription Factor Affects Anthocyanin Biosynthesis in Tomato Fruits
    Colanero, Sara
    Tagliani, Andrea
    Perata, Pierdomenico
    Gonzali, Silvia
    PLANT COMMUNICATIONS, 2020, 1 (01)
  • [22] R2R3-MYB transcription factor SmMYB75 promotes anthocyanin biosynthesis in eggplant (Solanum melongena L.)
    Shi, Suli
    Liu, Yang
    He, Yongjun
    Li, Linzhi
    Li, Dalu
    Chen, Huoying
    SCIENTIA HORTICULTURAE, 2021, 282
  • [23] The transcription factor CaBBX10 promotes chlorophyll and carotenoid pigment accumulation in Capsicum annuum fruit
    Wang, Jin
    Shan, Qingyun
    Yuan, Qiaoling
    Pan, Luzhao
    Wang, Meiqi
    Zhao, Pei
    Yu, Feng
    Dai, Li
    Xie, Lingling
    Wang, Zhongyi
    Dai, Xiongze
    Chen, Li
    Zou, Xuexiao
    Xiong, Cheng
    Zhu, Fan
    Liu, Feng
    PLANT PHYSIOLOGY, 2024, 197 (02)
  • [24] The R2R3 MYB transcription factor MYB189 negatively regulates secondary cell wall biosynthesis in Populus
    Jiao, Bo
    Zhao, Xin
    Lu, Wanxiang
    Guo, Li
    Luo, Keming
    TREE PHYSIOLOGY, 2019, 39 (07) : 1187 - 1200
  • [25] Anthocyanin biosynthesis in pears is regulated by a R2R3-MYB transcription factor PyMYB10
    Shouqian Feng
    Yanling Wang
    Song Yang
    Yuting Xu
    Xuesen Chen
    Planta, 2010, 232 : 245 - 255
  • [26] An R2R3-MYB transcription factor as a negative regulator of the flavonoid biosynthesis pathway in Ginkgo biloba
    Xu, Feng
    Ning, Yingjing
    Zhang, Weiwei
    Liao, Yongling
    Li, Linling
    Cheng, Hua
    Cheng, Shuiyuan
    FUNCTIONAL & INTEGRATIVE GENOMICS, 2014, 14 (01) : 177 - 189
  • [27] Buckwheat R2R3 MYB transcription factor FeMYBF1 regulates flavonol biosynthesis
    Matsui, Katsuhiro
    Oshima, Yoshimi
    Mitsuda, Nobutaka
    Sakamoto, Shingo
    Nishiba, Yoichi
    Walker, Amanda R.
    Ohme-Takagi, Masaru
    Robinson, Simon P.
    Yasui, Yasuo
    Mori, Masashi
    Takami, Hiromi
    PLANT SCIENCE, 2018, 274 : 466 - 475
  • [28] Characterization of a Citrus R2R3-MYB Transcription Factor that Regulates the Flavonol and Hydroxycinnamic Acid Biosynthesis
    Chaoyang Liu
    Jianmei Long
    Kaijie Zhu
    Linlin Liu
    Wei Yang
    Hongyan Zhang
    Li Li
    Qiang Xu
    Xiuxin Deng
    Scientific Reports, 6
  • [29] Anthocyanin biosynthesis in pears is regulated by a R2R3-MYB transcription factor PyMYB10
    Feng, Shouqian
    Wang, Yanling
    Yang, Song
    Xu, Yuting
    Chen, Xuesen
    PLANTA, 2010, 232 (01) : 245 - 255
  • [30] An R2R3-MYB transcription factor as a negative regulator of the flavonoid biosynthesis pathway in Ginkgo biloba
    Feng Xu
    Yingjing Ning
    Weiwei Zhang
    Yongling Liao
    Linling Li
    Hua Cheng
    Shuiyuan Cheng
    Functional & Integrative Genomics, 2014, 14 : 177 - 189