Optical applications of a generalized fractional integro-differential equation with periodicity

被引:1
|
作者
Baleanu, Dumitru [1 ,2 ,3 ]
Ibrahim, Rabha W. [4 ,5 ,6 ]
机构
[1] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkiye
[2] Inst Space Sci, R-76900 Bucharest, Romania
[3] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[4] Near East Univ, Math Res Ctr, Dept Math, Near East Blvd,Mersin 10, TR-99138 Nicosia, Turkiye
[5] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon
[6] Al Ayen Univ, Sci Res Ctr, Informat & Commun Technol Res Grp, Thi Qar, Iraq
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 05期
关键词
fractional calculus; fractional differential equation; fractional integral operator; fractional; differential operator;
D O I
10.3934/math.2023604
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Impulsive is the affinity to do something without thinking. In this effort, we model a mathematical formula types integro-differential equation (I-DE) to describe this behavior. We investigate periodic boundary value issues in Banach spaces for fractional a class of I-DEs with non -quick impulses. We provide numerous sufficient conditions of the existence of mild outcomes for I-DE utilizing the measure of non-compactness, the method of resolving domestic, and the fixed point result. Lastly, we illustrate a set of examples, which is given to demonstrate the investigations key findings. Our findings are generated some recent works in this direction.
引用
收藏
页码:11953 / 11972
页数:20
相关论文
共 50 条
  • [21] Solution of Nonlinear Fractional Stochastic Integro-Differential Equation
    Ahmed, Hamdy M.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2016, 37 (02) : 105 - 113
  • [22] Qualitative Aspects of a Fractional-Order Integro-Differential Equation with a Quadratic Functional Integro-Differential Constraint
    El-Sayed, Ahmed M. A.
    Alhamali, Antisar A. A.
    Hamdallah, Eman M. A.
    Ebead, Hanaa R.
    FRACTAL AND FRACTIONAL, 2023, 7 (12)
  • [23] Application of the Hypercomplex Fractional Integro-Differential Operators to the Fractional Stokes Equation
    Ferreira, M.
    Krausshar, R. S.
    Rodrigues, M. M.
    Vieira, N.
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM-2018), 2019, 2116
  • [24] Analysis of a Fractional-Order Quadratic Functional Integro-Differential Equation with Nonlocal Fractional-Order Integro-Differential Condition
    El-Sayed, Ahmed M. A.
    Alhamali, Antisar A. A.
    Hamdallah, Eman M. A.
    AXIOMS, 2023, 12 (08)
  • [25] SOLUTIONS IN SEVERAL TYPES OF PERIODICITY FOR PARTIAL NEUTRAL INTEGRO-DIFFERENTIAL EQUATION
    dos Santos, Jose Paulo C.
    Guzzo, Sandro M.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [26] Weighted pseudo almost automorphic functions with applications to impulsive fractional integro-differential equation
    Kavitha, Velusamy
    Arjunan, Mani Mallika
    Baleanu, Dumitru
    Grayna, Jeyakumar
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2023, 31 (01): : 143 - 166
  • [27] A qualitative study on generalized Caputo fractional integro-differential equations
    Mohammed D. Kassim
    Thabet Abdeljawad
    Wasfi Shatanawi
    Saeed M. Ali
    Mohammed S. Abdo
    Advances in Difference Equations, 2021
  • [28] Numerical schemes with convergence for generalized fractional integro-differential equations
    Kumar, Kamlesh
    Pandey, Rajesh K.
    Sultana, Farheen
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 388
  • [29] A qualitative study on generalized Caputo fractional integro-differential equations
    Kassim, Mohammed D.
    Abdeljawad, Thabet
    Shatanawi, Wasfi
    Ali, Saeed M.
    Abdo, Mohammed S.
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [30] An improved collocation method for solving a fractional integro-differential equation
    Zhang, Xiaoguang
    Du, Hong
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (01):