Optical applications of a generalized fractional integro-differential equation with periodicity

被引:1
|
作者
Baleanu, Dumitru [1 ,2 ,3 ]
Ibrahim, Rabha W. [4 ,5 ,6 ]
机构
[1] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkiye
[2] Inst Space Sci, R-76900 Bucharest, Romania
[3] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[4] Near East Univ, Math Res Ctr, Dept Math, Near East Blvd,Mersin 10, TR-99138 Nicosia, Turkiye
[5] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon
[6] Al Ayen Univ, Sci Res Ctr, Informat & Commun Technol Res Grp, Thi Qar, Iraq
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 05期
关键词
fractional calculus; fractional differential equation; fractional integral operator; fractional; differential operator;
D O I
10.3934/math.2023604
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Impulsive is the affinity to do something without thinking. In this effort, we model a mathematical formula types integro-differential equation (I-DE) to describe this behavior. We investigate periodic boundary value issues in Banach spaces for fractional a class of I-DEs with non -quick impulses. We provide numerous sufficient conditions of the existence of mild outcomes for I-DE utilizing the measure of non-compactness, the method of resolving domestic, and the fixed point result. Lastly, we illustrate a set of examples, which is given to demonstrate the investigations key findings. Our findings are generated some recent works in this direction.
引用
收藏
页码:11953 / 11972
页数:20
相关论文
共 50 条
  • [1] On a generalized fractional integro-differential equation of Volterra-type
    Al-Shammery, AH
    Kalla, SL
    Khajah, HG
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2000, 9 (02) : 81 - 90
  • [2] Reconstructing a fractional integro-differential equation
    Boumenir, Amin
    Kim Tuan, Vu
    Al-Khulaifi, Waled
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (04) : 3159 - 3166
  • [3] A singular fractional integro-differential equation
    Shabibi, M.
    Rezapour, Sh.
    Vaezpour, S.M.
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2017, 79 (01): : 109 - 118
  • [4] A SINGULAR FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION
    Shabibi, M.
    Rezapour, Sh.
    Vaezpour, S. M.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2017, 79 (01): : 109 - 118
  • [5] Asymptotic periodicity for a class of fractional integro-differential equations
    Wu, Zhong-Hua
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (02): : 506 - 517
  • [6] Generalized perturbation equation for integral and integro-differential equations and applications
    Galperin, EA
    MATHEMATICAL AND COMPUTER MODELLING, 2002, 36 (06) : 679 - 690
  • [7] A fractional integro-differential equation of Volterra type
    Boyadjiev, L
    Dobner, HJ
    Kalla, SL
    MATHEMATICAL AND COMPUTER MODELLING, 1998, 28 (10) : 103 - 113
  • [8] STABILITY OF A CLASS OF FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION
    Palaniappan, Muniyappan
    Subbarayan, Rajan
    FIXED POINT THEORY, 2019, 20 (02): : 591 - 600
  • [9] Computational Solution of a Fractional Integro-Differential Equation
    Kurulay, Muhammet
    Akinlar, Mehmet Ali
    Ibragimov, Ranis
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [10] Spectrum of an Integro-Differential Equation of Fractional Order
    Shamaev A.S.
    Shumilova V.V.
    Journal of Mathematical Sciences, 2023, 276 (1) : 191 - 198