Stable LiF-Rich Electrode-Electrolyte Interface toward High-Voltage and High-Energy-Density Lithium Metal Solid Batteries

被引:24
|
作者
Yang, Tianqi [1 ]
Zhang, Wenkui [1 ]
Lou, Jiatao [2 ,3 ]
Lu, Huanming [3 ]
Xia, Yang [1 ]
Huang, Hui [1 ]
Gan, Yongping [1 ]
He, Xinping [1 ]
Wang, Yao [1 ]
Tao, Xinyong [1 ]
Xia, Xinhui [1 ]
Zhang, Jun [1 ]
机构
[1] Zhejiang Univ Technol, Inst New Energy Mat & Technol, Coll Mat Sci & Engn, Hangzhou 310014, Peoples R China
[2] Tsinghua Univ, Inst Mat Res, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
[3] Chinese Acad Sci, Univ Chinese Acad Sci, Ninbo Inst Mat Technol & Engn NIMTE, Ningbo 315201, Peoples R China
基金
中国国家自然科学基金;
关键词
electrode-electrolyte interfaces; high energy density; LiF-rich; lithium metal solid batteries; lithium-rich layered oxide; MOLECULAR-DYNAMICS; ETHER;
D O I
10.1002/smll.202300494
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium-rich layered oxide (LRLO) materials have attracted significant attention due to their high specific capacity, low cost, and environmental friendliness. However, owing to its unique capacity activation mechanism, the release of lattice oxygen during the first charge process leads to a series of problems, such as severe voltage decay, poor cycle stability, and poor rate performance. Herein, a fluorinated quasi-solid-state electrolyte (QSSE) via a simple thermal polymerization method toward lithium metal batteries with LRLO materials is reported. The well-designed QSSE exhibits an ionic conductivity of 6.4 x 10(-4) S cm(-1) at 30 degrees C and a wide electrochemical stable window up to 5.6 V. Most importantly, XPS spectra demonstrate the generation of a LiF-rich electrode-electrolyte interface (EEI), where the in situ generated LiF provides strong protection against the structural degradation of LRLO materials and directs the uniform plating/stripping behaviors of lithium-ions to inhibit the formation of lithium dendrites. As a result, LRLO/QSSE/Li batteries exhibit excellent rate performance and demonstrate a large initial capacity for 209.7 mA h g(-1) with a capacity retention of 80.8% after 200 cycles at 0.5C. This work provides a new insight for the LiF-rich EEI design of safe, high-performance quasi-solid-state lithium metal batteries.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Advanced electrolyte systems with additives for high-cell-voltage and high-energy-density lithium batteries
    Liu, Jianwen
    He, Sicong
    Liu, Shaoqing
    Wang, Shiquan
    Zhang, Jiujun
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (43) : 22929 - 22954
  • [22] A fluorinated bifunctional additive achieving stable electrode/electrolyte interfaces for high-voltage lithium-metal batteries
    Zeng, Lei
    Gao, Lu
    Ou, Ting
    Xin, Yufan
    Du, Junliang
    Wang, Mengqi
    Meng, Yanshuang
    Pei, Xiaopeng
    Tan, Ying
    JOURNAL OF MATERIALS CHEMISTRY A, 2025,
  • [23] Stable Solvent-Derived Inorganic-Rich Solid Electrolyte Interphase (SEI) for High-Voltage Lithium-Metal Batteries
    Chen, Ziyu
    Wang, Bin
    Li, Yan
    Bai, Fengwei
    Zhou, Yongchao
    Li, Chengzong
    Li, Tao
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (24) : 28014 - 28020
  • [24] Structurally integrated asymmetric polymer electrolyte with stable Janus interface properties for high-voltage lithium metal batteries
    Chen, Silin
    Ma, Shunchao
    Liu, Zhenhua
    Li, Yanan
    Yin, Hongxing
    Song, Huiyu
    Zhang, Min
    Xin, Mingyang
    Sun, Liqun
    Liu, Yulong
    Xie, Haiming
    Cong, Lina
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 638 : 595 - 605
  • [25] Multifunctional polymer electrolyte improving stability of electrode-electrolyte interface in lithium metal battery under high voltage
    Zhu, Ming
    Wu, Jiaxin
    Liu, Bingxue
    Zhong, Wei-Hong
    Lan, Jinle
    Yang, Xiaoping
    Sui, Gang
    JOURNAL OF MEMBRANE SCIENCE, 2019, 588
  • [26] Surface fluorination of nickel nanowires enabling LiF-rich nanoscale solid electrolyte interface for stable lithium anodes
    Xu, Yang
    Yao, Lu
    Yuan, Hewei
    Weng, Haotian
    Li, Kun
    Li, Bin
    Huang, Xiaolu
    Su, Yanjie
    Hu, Nantao
    Zhang, Yafei
    CHEMICAL ENGINEERING JOURNAL, 2024, 496
  • [27] Strategies toward the development of high-energy-density lithium batteries
    Niu, Huizhe
    Zhang, Nan
    Lu, Ying
    Zhang, Zhe
    Li, Manni
    Liu, Jiaxiang
    Zhang, Nan
    Song, Wenqi
    Zhao, Yuzhen
    Miao, Zongcheng
    JOURNAL OF ENERGY STORAGE, 2024, 88
  • [28] Promising Electrode and Electrolyte Materials for High-Energy-Density Thin-Film Lithium Batteries
    Lin, Jie
    Lin, Liang
    Qu, Shasha
    Deng, Dongyuan
    Wu, Yunfan
    Yan, Xiaolin
    Xie, Qingshui
    Wang, Laisen
    Peng, Dong-Liang
    ENERGY & ENVIRONMENTAL MATERIALS, 2022, 5 (01) : 133 - 156
  • [29] Promising Electrode and Electrolyte Materials for High-Energy-Density Thin-Film Lithium Batteries
    Jie Lin
    Liang Lin
    Shasha Qu
    Dongyuan Deng
    Yunfan Wu
    Xiaolin Yan
    Qingshui Xie
    Laisen Wang
    Dongliang Peng
    Energy & Environmental Materials, 2022, 5 (01) : 133 - 156
  • [30] Promising Electrode and Electrolyte Materials for High-Energy-Density Thin-Film Lithium Batteries
    Jie Lin
    Liang Lin
    Shasha Qu
    Dongyuan Deng
    Yunfan Wu
    Xiaolin Yan
    Qingshui Xie
    Laisen Wang
    Dongliang Peng
    Energy & Environmental Materials , 2022, (01) : 133 - 156