Effects of micro-sprinkling with different irrigation levels on winter wheat grain yield and greenhouse gas emissions in the North China Plain

被引:1
|
作者
Zhen, Zhang [1 ]
Zhenwen, Yu [1 ]
Yu, Shi [1 ]
Yongli, Zhang [1 ]
机构
[1] Shandong Agr Univ, State Key Lab Crop Biol, Shandong 271018, Peoples R China
基金
中国国家自然科学基金;
关键词
Soil moisture; Dry matter translocation; Soil chemical properties; Grain yield; NITROUS-OXIDE EMISSIONS; WATER-USE EFFICIENCY; SUPPLEMENTAL IRRIGATION; LEAF SENESCENCE; DRY-MATTER; MANAGEMENT; TILLAGE; ACCUMULATION; SYSTEM; CARBON;
D O I
10.1016/j.eja.2022.126725
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Increasing scarcity of irrigation water is threatening global wheat production and sustainability. Accordingly, the water-saving irrigation regime has been strongly advocated to reduce irrigation water consumption. However, studies about greenhouse gas (GHG) emissions from the winter wheat cropping system with water-saving irri-gation are rare. In this study, five irrigation regimes, wherein the supplementary irrigation brought soil water content in the 0-40 cm profile to 65% (K65) field water capacity (FC), 70% (K70) FC, 75% (K75) FC, 80% (K80) FC, and 85% (K85) FC at the joining and anthesis stages in 2019-2022. K75 improved the leaf area index at the grain-filling stage and dry matter remobilization pre-anthesis and dry matter assimilation post-anthesis. Corre-spondingly, 5.48-23.96% increases in grain yield were observed for K75 compared with K65, K70, and K85 treatments, mainly attributable to increased number of kernels and 1000-kernel weight. Compared with the K80 and K85 treatments, K75 treatment had the most prominent effect on the instability of soil carbon, nitrogen, and moisture content, as reflected in decreased cumulative emissions of soil N2O (5.15-15.65%) and CH4 (6.07-44.07%). It also decreased the global warming potential (6.17-19.53%). However, there were no signif-icant differences among K65, K70, and K75 treatments. In addition, the K75 treatment decreased greenhouse gas intensity (GHGI) by 5.04-25.25% compared with K65, K70, K80 and K85 treatments. Collectively, based on the combined effects of grain yield and greenhouse gas emissions improvement, we recommend K75 as a sustainable irrigation regime that can improve grain yield and decrease greenhouse gas emissions.
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [21] Improving winter wheat grain yield and water-/nitrogen-use efficiency by optimizing the micro-sprinkling irrigation amount and nitrogen application rate
    Li Jin-peng
    Zhang Zhen
    Yao Chun-sheng
    Liu Yang
    Wang Zhi-min
    Fang Bao-ting
    Zhang Ying-hua
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2021, 20 (02) : 606 - 621
  • [22] Response of winter wheat grain yield and water use efficiency to deficit irrigation in the North China Plain
    Han, Huifang
    Ren, Yujie
    Gao, Chao
    Yan, Zhenxing
    Li, Quanqi
    EMIRATES JOURNAL OF FOOD AND AGRICULTURE, 2017, 29 (12): : 971 - 977
  • [23] Winter wheat grain yield and its components in the North China Plain: irrigation management, cultivation, and climate
    Lv, Lihua
    Yao, Yanrong
    Zhang, Lihua
    Dong, Zhiqiang
    Jia, Xiuling
    Liang, Shuangbo
    Ji, Junjie
    CHILEAN JOURNAL OF AGRICULTURAL RESEARCH, 2013, 73 (03): : 233 - 242
  • [24] Improving winter wheat grain yield and water-/nitrogen-use efficiency by optimizing the micro-sprinkling irrigation amount and nitrogen application rate
    LI Jin-peng
    ZHANG Zhen
    YAO Chun-sheng
    LIU Yang
    WANG Zhi-min
    FANG Bao-ting
    ZHANG Ying-hua
    Journal of Integrative Agriculture, 2021, 20 (02) : 606 - 621
  • [25] Yield and water use response of winter wheat to winter irrigation in the North China Plain
    Shao, L. W.
    Zhang, X. Y.
    Sun, H. Y.
    Chen, S. Y.
    Wang, Y. M.
    JOURNAL OF SOIL AND WATER CONSERVATION, 2011, 66 (02) : 104 - 113
  • [26] Assessing the effects of precipitation and irrigation on winter wheat yield and water productivity in North China Plain
    Zeng, Ruiyun
    Yao, Fengmei
    Zhang, Sha
    Yang, Shanshan
    Bai, Yun
    Zhang, Jiahua
    Wang, Jingwen
    Wang, Xin
    AGRICULTURAL WATER MANAGEMENT, 2021, 256
  • [27] Grain yield and water productivity of winter wheat controlled by irrigation regime and manure substitution in the North China Plain
    Yan, Zhenxing
    Zhang, Wenying
    Liu, Xiuwei
    Wang, Qingsuo
    Liu, Binhui
    Mei, Xurong
    Agricultural Water Management, 2024, 295
  • [28] Grain yield and water productivity of winter wheat controlled by irrigation regime and manure substitution in the North China Plain
    Yan, Zhenxing
    Zhang, Wenying
    Liu, Xiuwei
    Wang, Qingsuo
    Liu, Binhui
    Mei, Xurong
    AGRICULTURAL WATER MANAGEMENT, 2024, 295
  • [29] Interactive effects of different warming levels and tillage managements on winter wheat growth, physiological processes, grain yield and quality in the North China Plain
    Li, Yibo
    Hou, Ruixing
    Tao, Fulu
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2020, 295
  • [30] Effects of spring limited irrigation on grain yield and root characteristics of winter wheat in groundwater-overexploitation areas in the North China Plain
    Wang, Li
    Liu, Xiaoli
    Liu, Xuejing
    Bao, Xiaoyuan
    Zhang, Xuecheng
    Yin, Baozhong
    Wang, Wentao
    Wang, Yandong
    Zhen, Wenchao
    AGRICULTURAL WATER MANAGEMENT, 2024, 294