Tracing the path of disruption: 13C isotope applications in traumatic brain injury-induced metabolic dysfunction

被引:3
|
作者
Peper, Charles J. [1 ,2 ]
Kilgore, Mitchell D. [1 ,2 ]
Jiang, Yinghua [1 ,2 ]
Xiu, Yuwen [1 ,2 ]
Xia, Winna [1 ,2 ]
Wang, Yingjie [1 ,2 ]
Shi, Mengxuan [1 ,2 ]
Zhou, Di [1 ,2 ]
Dumont, Aaron S. [1 ,2 ]
Wang, Xiaoying [1 ,2 ,3 ]
Liu, Ning [1 ,2 ,3 ,4 ]
机构
[1] Tulane Univ, Sch Med, Clin Neurosci Res Ctr, Dept Neurosurg, New Orleans, LA 70112 USA
[2] Tulane Univ, Sch Med, Dept Neurol, New Orleans, LA 70112 USA
[3] Tulane Univ, Tulane Brain Inst, Neurosci Program, New Orleans, LA USA
[4] Tulane Univ, Translat Sci Inst, New Orleans, LA USA
基金
美国国家卫生研究院;
关键词
C-13; isotope; bioenergetics; metabolism; traumatic brain injury; CEREBRAL GLUCOSE-METABOLISM; PENTOSE-PHOSPHATE PATHWAY; TRICARBOXYLIC-ACID CYCLE; MITOCHONDRIAL OXIDATIVE DAMAGE; CORTICAL IMPACT INJURY; CHAIN AMINO-ACIDS; TIME-COURSE; RAT MODEL; C-13-LABELED MICRODIALYSIS; EXTRACELLULAR GLUCOSE;
D O I
10.1111/cns.14693
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Cerebral metabolic dysfunction is a critical pathological hallmark observed in the aftermath of traumatic brain injury (TBI), as extensively documented in clinical investigations and experimental models. An in-depth understanding of the bioenergetic disturbances that occur following TBI promises to reveal novel therapeutic targets, paving the way for the timely development of interventions to improve patient outcomes. The C-13 isotope tracing technique represents a robust methodological advance, harnessing biochemical quantification to delineate the metabolic trajectories of isotopically labeled substrates. This nuanced approach enables real-time mapping of metabolic fluxes, providing a window into the cellular energetic state and elucidating the perturbations in key metabolic circuits. By applying this sophisticated tool, researchers can dissect the complexities of bioenergetic networks within the central nervous system, offering insights into the metabolic derangements specific to TBI pathology. Embraced by both animal studies and clinical research, C-13 isotope tracing has bolstered our understanding of TBI-induced metabolic dysregulation. This review synthesizes current applications of isotope tracing and its transformative potential in evaluating and addressing the metabolic sequelae of TBI.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Down-regulation of astrocytic sonic hedgehog by activation of endothelin ETB receptors: Involvement in traumatic brain injury-induced disruption of blood brain barrier in a mouse model
    Michinaga, Shotaro
    Inoue, Ayana
    Sonoda, Kyomi
    Mizuguchi, Hiroyuki
    Koyama, Yutaka
    NEUROCHEMISTRY INTERNATIONAL, 2021, 146
  • [42] Longitudinal assessment of mitochondrial dysfunction in acute traumatic brain injury using hyperpolarized [1-13C]pyruvate
    Hackett, Edward P.
    Chen, Jun
    Ingle, Laura
    Al Nemri, Sarah
    Barshikar, Surendra
    Pinho, Marco da Cunha
    Plautz, Erik J.
    Bartnik-Olson, Brenda L.
    Park, Jae Mo
    MAGNETIC RESONANCE IN MEDICINE, 2023, 90 (06) : 2432 - 2442
  • [43] CCR21 MACROPHAGES EXACERBATE TRAUMATIC BRAIN INJURY-INDUCED INTESTINAL DYSFUNCTION VIA TOLL-LIKE RECEPTOR 4 SIGNALING
    El Baassiri, Mahmoud
    Raouf, Zachariah
    Fulton, William
    Sodhi, Chhinder
    Hackam, David
    Nasr, Isam
    JOURNAL OF NEUROTRAUMA, 2023, 40 (15-16) : A100 - A100
  • [44] Repetitive traumatic brain injury-induced complement C1-related inflammation impairs long-term hippocampal neurogenesis
    Wang, Jing
    Zhang, Bing
    Li, Lanfang
    Tang, Xiaomei
    Zeng, Jinyu
    Song, Yige
    Xu, Chao
    Zhao, Kai
    Liu, Guoqiang
    Lu, Youming
    Li, Xinyan
    Shu, Kai
    NEURAL REGENERATION RESEARCH, 2025, 20 (03) : 821 - 835
  • [45] Enhancing Metabolic Imaging of Energy Metabolism in Traumatic Brain Injury Using Hyperpolarized [1-13C]Pyruvate and Dichloroacetate
    DeVience, Stephen J.
    Lu, Xin
    Proctor, Julie L.
    Rangghran, Parisa
    Medina, Juliana A.
    Melhem, Elias R.
    Gullapalli, Rao P.
    Fiskum, Gary
    Mayer, Dirk
    METABOLITES, 2021, 11 (06)
  • [46] Imaging Acute Metabolic Changes in Patients with Mild Traumatic Brain Injury Using Hyperpolarized [1-13C]Pyruvate
    Hackett, Edward P.
    Pinho, Marco C.
    Harrison, Crystal E.
    Reed, Galen D.
    Liticker, Jeff
    Raza, Jaffar
    Hall, Ronald G.
    Malloy, Craig R.
    Barshikar, Surendra
    Madden, Christopher J.
    Park, Jae Mo
    ISCIENCE, 2020, 23 (12)
  • [47] Pre-injury magnesium treatment prevents traumatic brain injury-induced hippocampal ERK activation, neuronal loss, and cognitive dysfunction in the radial-arm maze test
    Enomoto, T
    Osugi, T
    Satoh, H
    McIntosh, TK
    Nabeshima, T
    JOURNAL OF NEUROTRAUMA, 2005, 22 (07) : 783 - 792
  • [48] C-terminal binding proteins 1 and 2 in traumatic brain injury-induced inflammation and their inhibition as an approach for anti-inflammatory treatment
    Li, Hong
    Zhang, Caiguo
    Yang, Chunxia
    Blevins, Melanie
    Norris, David
    Zhao, Rui
    Huang, Mingxia
    INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES, 2020, 16 (07): : 1107 - 1120
  • [49] Loss of Brain-Derived Neurotrophic Factor (BDNF) Resulting From Congenital- Or Mild Traumatic Brain Injury-Induced Blood-Brain Barrier Disruption Correlates With Depressive-Like Behaviour
    Lesniak, Anna
    Poznanski, Piotr
    Religa, Piotr
    Nawrocka, Agata
    Bujalska-Zadrozny, Magdalena
    Sacharczuk, Mariusz
    NEUROSCIENCE, 2021, 458 : 1 - 10
  • [50] The HMGB1-RAGE axis mediates traumatic brain injury-induced pulmonary dysfunction in lung transplantation (vol 6, 254er5, 2014)
    Weber, D. J.
    Gracon, A. S. A.
    Ripsch, M. S.
    Fisher, A. J.
    Cheon, B. M.
    Pandya, P. H.
    Vittal, R.
    Capitano, M. L.
    Kim, Y.
    Allette, Y. M.
    Riley, A. A.
    McCarthy, B. P.
    Territo, P. R.
    Hutchins, G. D.
    Broxmeyer, H. E.
    Sandusky, G. E.
    White, F. A.
    Wilkes, D. S.
    SCIENCE TRANSLATIONAL MEDICINE, 2014, 6 (254)