Multi-Agent Deep Reinforcement Learning for Multi-Lane Freeways Differential Variable Speed Limit Control in Mixed Traffic Environment

被引:1
|
作者
Han, Lei [1 ]
Zhang, Lun [1 ]
Guo, Weian [2 ,3 ]
机构
[1] Tongji Univ, Coll Transportat Engn, Key Lab Rd & Traff Engn Minist Educ, Shanghai, Peoples R China
[2] Tongji Univ, Coll Elect & Informat Engn, Shanghai, Peoples R China
[3] Tongji Univ, Sino German Coll Appl Sci, Shanghai, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
artificial intelligence; advanced traffic management systems; variable speed limit; mixed traffic flow; connected and automated vehicles; ADAPTIVE CRUISE CONTROL; IMPACTS; SAFETY;
D O I
10.1177/03611981241230524
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In advanced freeway traffic management systems, variable speed limit control (VSLC) is frequently discussed as one of the control measures. However, in a mixed traffic environment where connected and automated vehicles (CAVs) and human-driven vehicles coexist, the existing VSLC strategies for multi-lane freeways have two major shortcomings: the lack of precise control at the individual vehicle level, and the implementation of uniform VSLC across all lanes. This paper proposes a novel differential variable speed limit control (DVSLC) strategy based on multi-agent reinforcement learning (MARL) in a mixed traffic environment (abbreviated as MARL-DVSLC). The proposed MARL-DVSLC approach utilized a centralized training with decentralized execution paradigm to learn the joint actions of variable speed limit controllers across all lanes, thereby setting different speed limits for each lane. The reward function takes into account the total time spent (TTS) on freeways to improve traffic mobility. Note that MARL-DVSLC disseminates speed limit information to CAVs via infrastructure-to-vehicle (I2V) communication. The effectiveness of MARL-DVSLC is verified under different simulation scenarios. Moreover, its performance is compared with the feedback-based VSLC method, the DVSLC method based on deep deterministic policy gradient (DDPG) (abbreviated as DDPG-DVSLC), and the no-control case in relation to performance. The results indicate that the proposed strategy can effectively improve traffic efficiency and reduce the spatiotemporal range of traffic congestion at a 30% penetration rate of CAVs. Compared with the suboptimal DDPG-DVSLC method, the proposed strategy can improve TTS by 12.88% with stable traffic demand and 10.24% with fluctuating traffic demand.
引用
收藏
页码:749 / 763
页数:15
相关论文
共 50 条
  • [31] Microscopic Traffic Simulation by Cooperative Multi-agent Deep Reinforcement Learning
    Bacchiani, Giulio
    Molinari, Daniele
    Patander, Marco
    AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2019, : 1547 - 1555
  • [32] Formation Control of Multi-agent Based on Deep Reinforcement Learning
    Pan, Chao
    Nian, Xiaohong
    Dai, Xunhua
    Wang, Haibo
    Xiong, Hongyun
    PROCEEDINGS OF 2022 INTERNATIONAL CONFERENCE ON AUTONOMOUS UNMANNED SYSTEMS, ICAUS 2022, 2023, 1010 : 1149 - 1159
  • [33] A Cellular Automata Simulation for Traffic Flow on Multi-lane Freeways under Various Control Rules
    Ma, Ke
    Yan, Baoyue
    Luo, Xinggang
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 455 - 460
  • [34] MAGNet: Multi-agent Graph Network for Deep Multi-agent Reinforcement Learning
    Malysheva, Aleksandra
    Kudenko, Daniel
    Shpilman, Aleksei
    2019 XVI INTERNATIONAL SYMPOSIUM PROBLEMS OF REDUNDANCY IN INFORMATION AND CONTROL SYSTEMS (REDUNDANCY), 2019, : 171 - 176
  • [35] Multi-agent Deep Reinforcement Learning for Task Allocation in Dynamic Environment
    Ben Noureddine, Dhouha
    Gharbi, Atef
    Ben Ahmed, Samir
    ICSOFT: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON SOFTWARE TECHNOLOGIES, 2017, : 17 - 26
  • [36] Train timetabling with the general learning environment and multi-agent deep reinforcement learning
    Li, Wenqing
    Ni, Shaoquan
    TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2022, 157 : 230 - 251
  • [37] Multi-Agent Deep Reinforcement Learning with Clustering and Information Sharing for Traffic Light Cooperative Control
    Du T.
    Wang B.
    Cheng H.
    Luo L.
    Zeng N.
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2024, 46 (02): : 538 - 545
  • [38] Multi-agent deep reinforcement learning with actor-attention-critic for traffic light control
    Wang, Bin
    He, ZhengKun
    Sheng, JinFang
    Liu, YingXian
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2024, 238 (09) : 2880 - 2888
  • [39] Traffic signal priority control based on shared experience multi-agent deep reinforcement learning
    Wang, Zhiwen
    Yang, Kangkang
    Li, Long
    Lu, Yanrong
    Tao, Yufei
    IET INTELLIGENT TRANSPORT SYSTEMS, 2023, 17 (07) : 1363 - 1379
  • [40] Cooperative Optimization of Traffic Signals and Vehicle Speed Using a Novel Multi-Agent Deep Reinforcement Learning
    Huang, Hao
    Hu, Zhiqun
    Li, Muyu
    Lu, Zhaoming
    Wen, Xiangming
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (06) : 7785 - 7798