A solar-driven interfacial evaporator for seawater desalination based on mussel-inspired superhydrophobic composite coating

被引:27
|
作者
Wu, Wanze [1 ,2 ]
Zhao, Misheng [3 ]
Miao, Shiwei [2 ]
Li, Xiaoyan [1 ]
Wu, Yongzhong [4 ]
Gong, Xiao [2 ]
Wang, Hangxiang [1 ,5 ]
机构
[1] Jinan Microecol Biomed Shandong Lab, Jinan 250117, Peoples R China
[2] Wuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Peoples R China
[3] Wenzhou Peoples Hosp, Dept Clin Lab, Wenzhou, Peoples R China
[4] Suzhou Univ Sci & Technol, Sch Mech Engn, Suzhou 215009, Peoples R China
[5] Zhejiang Univ, Affiliated Hosp 1,Key Lab Organ Transplantat, Sch Med,NHC Key Lab Combined Multiorgan Transplant, Res Ctr Diag & Treatment Hepatobiliary Dis, Hangzhou, Zhejiang Provin, Peoples R China
基金
中国国家自然科学基金;
关键词
Superhydrophobic; Seawater desalination; Solar evaporators; Mussel-inspired chemistry; STEAM-GENERATION; IN-SITU; NANOTUBES; CHEMISTRY; AEROGEL;
D O I
10.1016/j.carbon.2023.118593
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Superhydrophobic solar-driven interfacial evaporator is emerging as an energy-efficient technology for seawater desalination, which can be easily fabricated using robust photothermal superhydrophobic coating and substrate. The bifunctional coating is of great importance in providing stable and highly photothermal and superhydrophobic performance for a solar-driven interfacial evaporator. In this work, a mussel-inspired PANI@PDA@CNT/EP/FAS-17 composite was created to fabricate the bifunctional coating on the melamine sponge substrate for seawater desalination. The solar-vapor conversion efficiency of the resulting PANI@PDA@CNT/EP/ FAS-17 solar-driven interfacial evaporator is 81.67 % and the evaporation rate is 1.3 kg center dot m- 2 h-1 under 1 Sun. Furthermore, the solar-vapor conversion efficiency and the evaporation rate are stable in a simulated seawater environment with a 3.5 wt% NaCl solution. The resulting superhydrophobic solar-driven interfacial evaporator is expected to have a wide application prospect in seawater desalination.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Solar-Driven All-in-One Interfacial Water Evaporator Based on Electrostatic Flocking
    Guo, Yang
    Javed, Muhammad
    Li, Xiaoyan
    Zhai, Shixiong
    Cai, Zaisheng
    Xu, Bi
    ADVANCED SUSTAINABLE SYSTEMS, 2021, 5 (01)
  • [32] Towards highly efficient solar-driven interfacial evaporation for desalination
    Liu, Xinghang
    Mishra, Debesh Devadutta
    Wang, Xianbao
    Peng, Hongyan
    Hu, Chaoquan
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (35) : 17907 - 17937
  • [33] Solar-driven interfacial desalination for simultaneous freshwater and salt generation
    Xu, Jiale
    Wang, Zizhao
    Chang, Chao
    Fu, Benwei
    Tao, Peng
    Song, Chengyi
    Shang, Wen
    Deng, Tao
    DESALINATION, 2020, 484
  • [34] Solar-driven interfacial desalination actively adjusted by the electric field
    Fu, Shijin
    Chen, Yanjun
    Tao, Qinghe
    Li, Changzheng
    Liu, Xiuliang
    He, Deqiang
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 327
  • [35] A coal-based multifunctional membrane for solar-driven seawater desalination and power generation
    Zhang, Busheng
    Chen, Hongming
    Huang, Yingchun
    Liu, Zijin
    Lau, Woon-Ming
    He, Xinbo
    Zhou, Dan
    DESALINATION, 2024, 578
  • [36] Biomass Hydrogel Solar-Driven Multifunctional Evaporator for Desalination, VOC Removal, and Sterilization
    An, Ning
    Ma, Mengyu
    Chen, Yi
    Wang, Zhining
    Li, Qian
    ACS ES&T ENGINEERING, 2024,
  • [37] Magnetic field induced the assembling of Photothermal evaporator for efficient solar-driven desalination
    Zhou, Mingyu
    Han, Peng
    Qi, Guicun
    Gao, Dali
    Abdel-Ghafar, Hamdy Maamoun
    Wang, Yuchao
    Tao, Shengyang
    ECOMAT, 2023, 5 (09)
  • [38] Solar-driven Seawater Desalination Using plant-derived nanoparticles
    Tekam, Manish Kumar
    Verma, Sudhir
    Manjari, K. Sri
    Birawat, Khushbu K.
    Mishra, Ravi
    Jhariya, D. C.
    Mullasseri, Sileesh
    Hans, Aradhana Lucky
    Chechi, Tejinder Singh
    Mishra, Shwetakshi
    Baskar, Sushmitha
    CURRENT SCIENCE, 2020, 119 (02): : 168 - 168
  • [39] Arabic-dome-inspired hierarchical design for stable and high-efficiency solar-driven seawater desalination
    Song, Changyuan
    Irshad, Muhammad Sultan
    Jin, Yin
    Hu, Junhua
    Liu, Wentao
    Desalination, 2022, 544
  • [40] Arabic-dome-inspired hierarchical design for stable and high-efficiency solar-driven seawater desalination
    Song, Changyuan
    Irshad, Muhammad Sultan
    Jin, Yin
    Hu, Junhua
    Liu, Wentao
    DESALINATION, 2022, 544