Molecular Dynamics Simulation on the Charge Transport Properties in a Salt-in-Ionic Liquid Electrolyte

被引:2
|
作者
Ren, Xiaozhe [1 ]
Yan, Tianying [1 ]
机构
[1] Nankai Univ, Inst New Energy Mat Chem, Sch Mat Sci & Engn, Tianjin 300350, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2023年 / 127卷 / 48期
基金
中国国家自然科学基金;
关键词
IRREVERSIBLE-PROCESSES; CHALLENGES;
D O I
10.1021/acs.jpcb.3c05973
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A clear picture of charge transport properties in salt-in-ionic liquid electrolyte (SILE) is indispensable for the applications in lithium-ion batteries. In this study, we applied molecular dynamics (MD) simulations on a typical SILE system, composed of lithium bis(fluorosulfonyl)imide (LiFSI) with a molar fraction of 0.3 doped in 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMIMFSI). Based on the MD simulations, we calculated conductivity spectra from 10(8) Hz to 10(14) Hz, charge current correlation functions, and charge mean square displacements, based on the center-of-mass (COM) velocities of the ions. The conductivity spectra show a bimodal feature between 10(12) Hz and 10(13) Hz, attributed to the interionic vibrations of the EMIM+-FSI- and Li+-FSI- contact ion pairs, respectively. Structural relaxation is observed between 10(9) Hz and 10(12) Hz, and a flat plateau below 10(9) Hz, attributed to the direct current (DC) conductivity. For this SILE composed of three constituent ions, i.e., Li+, EMIM+, and FSI-, the above transport properties are further partitioned to the contributions of the individual constituent ions, including self, distinct contribution of the same constituent ions, and also the cross correlation between them. Detailed analyses on the individual contributions reveal strongly correlated motions in this complex ionic system.
引用
收藏
页码:10434 / 10446
页数:13
相关论文
共 50 条
  • [41] Ionic structure and transport properties of KF-NaF-AlF3 fused salt: a molecular dynamics study
    Lv, Xiaojun
    Han, Zexun
    Zhang, Hengxing
    Liu, Qingsheng
    Chen, Jiangan
    Jiang, Liangxing
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (14) : 7474 - 7482
  • [42] Molecular Dynamics and Charge Transport in Polymeric Polyisobutylene-Based Ionic Liquids
    Frenzel, Falk
    Folikumah, Makafui Y.
    Schulz, Matthias
    Anton, A. Markus
    Binder, Wolfgang H.
    Kremer, Friedrich
    MACROMOLECULES, 2016, 49 (07) : 2868 - 2875
  • [43] Study on the transport properties of aqueous electrolyte solution by brownian dynamics simulation
    Shi, HB
    Yu, YX
    Gao, GH
    ACTA CHIMICA SINICA, 2005, 63 (05) : 358 - 362
  • [44] Molecular Dynamics Simulation on Thermodynamic Properties and Transport Coefficients
    D.X. Xiong
    Y.S. Xu
    Journal of Thermal Science, 1996, (03) : 196 - 200
  • [45] Transport Properties of Fluids in Micropores by Molecular Dynamics Simulation
    刘迎春
    王琦
    吕玲红
    Chinese Journal of Chemistry, 2004, (03) : 238 - 242
  • [46] Transport properties of fluids in micropores by molecular dynamics simulation
    Liu, YC
    Wang, Q
    Lü, LH
    CHINESE JOURNAL OF CHEMISTRY, 2004, 22 (03) : 238 - 242
  • [47] Interfacial Properties of Double Salt Ionic Liquids: A Molecular Dynamics Study
    Garcia, Gregorio
    Atilhan, Mert
    Aparicio, Santiago
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (51): : 28405 - 28416
  • [48] Transport properties of uranium dioxide by molecular dynamics simulation
    Gunay, Seckin D.
    Akdere, Unsal
    Kavanoz, Birtan
    Tasseven, Cetin
    COMPUTATION IN MODERN SCIENCE AND ENGINEERING VOL 2, PTS A AND B, 2007, 2 : 1212 - 1215
  • [49] Direct Correlation between Ionic Liquid Transport Properties and Ion Pair Lifetimes: A Molecular Dynamics Study
    Zhang, Yong
    Maginn, Edward J.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (04): : 700 - 705
  • [50] Charge/discharge properties of activated carbon/ruthenocene hybrid electrodes in an ionic liquid electrolyte
    Itoi, Hiroyuki
    Kasai, Yuto
    Tanabe, Yuichiro
    Suzuki, Ryutaro
    Miyaji, Masahiro
    Ohzawa, Yoshimi
    JOURNAL OF SOLID STATE CHEMISTRY, 2021, 299 (299)