Quantification of Thalamic Atrophy in MS: From the Multicenter Italian Neuroimaging Network Initiative Data Set to Clinical Application

被引:0
|
作者
Storelli, Loredana [1 ]
Pagani, Elisabetta [1 ]
Pantano, Patrizia [5 ,6 ]
Gallo, Antonio [7 ,8 ]
De Stefano, Nicola [9 ]
Rocca, Maria A. [1 ,2 ,10 ]
Filippi, Massimo [1 ,2 ,3 ,4 ,10 ,11 ]
机构
[1] Ist Ricovero & Cura Carattere Sci, San Raffaele Sci Inst, Neuroimaging Res Unit, Milan, Italy
[2] Ist Ricovero & Cura Carattere Sci, San Raffaele Sci Inst, Div Neurosci, Neurol Unit, Milan, Italy
[3] Ist Ricovero &Cura Carattere Sci, San Raffaele Sci Inst, Neurorehabil Unit, Milan, Italy
[4] Ist Ricovero & Cura Carattere Sci, San Raffaele Sci Inst, Neurophysiol Serv, Milan, Italy
[5] Sapienza Univ Rome, Dept Human Neurosci, Rome, Italy
[6] Ist Ricovero & Cura Carattere Sci NEUROMED, Pozzilli, Isernia, Italy
[7] Univ Campania Luigi Vanvitelli, Dept Adv Med & Surg Sci, Naples, Italy
[8] Univ Campania Luigi Vanvitelli, MRI 3T Ctr, Naples, Italy
[9] Univ Siena, Dept Med Surg & Neurosci, Siena, Italy
[10] Univ Vita Salute San Raffaele, Milan, Italy
[11] IRCCS San Raffaele Sci Inst, Div Neurosci, Neuroimaging Res Unit, Via Olgettina 60, I-20132 Milan, Italy
关键词
GREY-MATTER ATROPHY; MULTIPLE-SCLEROSIS; SEGMENTATION; REPRODUCIBILITY; MOVEMENT; IMAGES;
D O I
10.3174/ajnr.A8050
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
BACKGROUND AND PURPOSE: Thalamic atrophy occurs from the earliest phases of MS; however, this measure is not included in clinical practice. Our purpose was to obtain a reliable segmentation of the thalamus in MS by comparing existing automatic methods cross-sectionally and longitudinally.MATERIALS AND METHODS: MR images of 141 patients with relapsing-remitting MS (mean age, 38 years; range, 19-58 years; 95 women) and 69 healthy controls (mean age, 36 years; range, 22-69 years; 47 women) were retrieved from the Italian Neuroimaging Network Initiative repository: T1WI, T2WI, and DWI at baseline and after 1 year (136 patients, 31 healthy controls). Three segmentation software programs (FSL-FIRST, FSL-MIST, FreeSurfer) were compared. At baseline, agreement among pipelines, correlations with age, disease duration, clinical score, and T2-hyperintense lesion volume were evaluated. Effect sizes in differentiating patients and controls were assessed cross-sectionally and longitudinally. Variability of longitudinal changes in controls and sample sizes were assessed. False discovery rate-adjusted P <.05 was considered significant.RESULTS: At baseline, FSL-FIRST and FSL-MIST showed the highest agreement in the results of thalamic volume (R = 0.87, P <.001), with the highest effect size for FSL-MIST (Cohen d = 1.11); correlations with demographic and clinical variables were comparable for all software. Longitudinally, FSL-MIST showed the lowest variability in estimating thalamic volume changes for healthy controls (SD= 1.07%), the highest effect size (Cohen d = 0.44), and the smallest sample size at 80% power level (15 subjects per group).CONCLUSIONS: Multimodal segmentation by FSL-MIST increased the robustness of the results with better capability to detect small variations in thalamic volumes.
引用
收藏
页码:1399 / 1404
页数:6
相关论文
共 49 条
  • [1] Brain MRI atrophy quantification in MS From methods to clinical application
    Rocca, Maria A.
    Battaglini, Marco
    Benedict, Ralph H. B.
    De Stefano, Nicola
    Geurts, Jeroen J. G.
    Henry, Roland G.
    Horsfield, Mark A.
    Jenkinson, Mark
    Pagani, Elisabetta
    Filippi, Massimo
    [J]. NEUROLOGY, 2017, 88 (04) : 403 - 413
  • [2] Quantification of Thalamic Volume in Multiple Sclerosis: From the Multicenter INNI Dataset Towards the Clinical Application
    Storelli, Loredana
    Pagani, Elisabetta
    Pantano, Patrizia
    Tedeschi, Gioacchino
    De Stefano, Nicola
    Preziosa, Paolo
    Rocca, Maria
    Filippi, Massimo
    [J]. NEUROLOGY, 2023, 100 (17)
  • [3] Quantification of Thalamic Volume in Multiple Sclerosis: From the Multicenter INNI Dataset Towards Clinical Application
    Preziosa, P.
    Storelli, L.
    Pagani, E.
    Pantano, P.
    Tedeschi, G.
    De Stefano, N.
    Rocca, M.
    Filippi, M.
    [J]. EUROPEAN JOURNAL OF NEUROLOGY, 2023, 30 : 705 - 705
  • [4] Quantification of thalamic volume in multiple sclerosis: from the multicenter INNI dataset towards the clinical application
    Storelli, L.
    Pagani, E.
    Pantano, P.
    Tedeschi, G.
    De Stefano, N.
    Rocca, M. A.
    Filippi, M.
    [J]. MULTIPLE SCLEROSIS JOURNAL, 2022, 28 (3_SUPPL) : 265 - 266
  • [5] The Italian Neuroimaging Network Initiative (INNI): enabling the use of advanced MRI techniques in patients with MS
    Filippi, M.
    Tedeschi, G.
    Pantano, P.
    De Stefano, N.
    Zaratin, P.
    Rocca, M. A.
    [J]. NEUROLOGICAL SCIENCES, 2017, 38 (06) : 1029 - 1038
  • [6] The Italian Neuroimaging Network Initiative (INNI): enabling the use of advanced MRI techniques in patients with MS
    M. Filippi
    G. Tedeschi
    P. Pantano
    N. De Stefano
    P. Zaratin
    M. A. Rocca
    [J]. Neurological Sciences, 2017, 38 : 1029 - 1038
  • [7] Integration and characterization of brain MRI data from the Italian neuroimaging network initiative (INNI) for the study of multiple sclerosis
    Storelli, L.
    Rocca, M. A.
    Pagani, E.
    Pantano, P.
    De Stefano, N.
    Tedeschi, G.
    Zaratin, P.
    Filippi, M.
    [J]. MULTIPLE SCLEROSIS JOURNAL, 2019, 25 : 480 - 480
  • [8] Integration and Characterization of Brain MRI Data from the Italian Neuroimaging Network Initiative (INNI) for the Study of Multiple Sclerosis
    Storelli, Loredana
    Rocca, Maria
    Pagani, Elisabetta
    Pantano, Patrizia
    De Stefano, Nicola
    Tedeschi, Gioacchino
    Zaratin, Paola
    Filippi, Massimo
    [J]. NEUROLOGY, 2019, 92 (15)
  • [9] Resting-state functional MRI in multicenter studies on multiple sclerosis: a report on raw data quality and functional connectivity features from the Italian Neuroimaging Network Initiative
    Alessandro Pasquale De Rosa
    Fabrizio Esposito
    Paola Valsasina
    Alessandro d’Ambrosio
    Alvino Bisecco
    Maria A. Rocca
    Silvia Tommasin
    Chiara Marzi
    Nicola De Stefano
    Marco Battaglini
    Patrizia Pantano
    Mario Cirillo
    Gioacchino Tedeschi
    Massimo Filippi
    Antonio Gallo
    [J]. Journal of Neurology, 2023, 270 : 1047 - 1066
  • [10] Resting-state functional MRI in multicenter studies on multiple sclerosis: a report on raw data quality and functional connectivity features from the Italian Neuroimaging Network Initiative
    De Rosa, Alessandro Pasquale
    Esposito, Fabrizio
    Valsasina, Paola
    D'Ambrosio, Alessandro
    Bisecco, Alvino
    Rocca, Maria A.
    Tommasin, Silvia
    Marzi, Chiara
    De Stefano, Nicola
    Battaglini, Marco
    Pantano, Patrizia
    Cirillo, Mario
    Tedeschi, Gioacchino
    Filippi, Massimo
    Gallo, Antonio
    [J]. JOURNAL OF NEUROLOGY, 2023, 270 (02) : 1047 - 1066