Resting-state functional MRI in multicenter studies on multiple sclerosis: a report on raw data quality and functional connectivity features from the Italian Neuroimaging Network Initiative

被引:8
|
作者
De Rosa, Alessandro Pasquale [1 ]
Esposito, Fabrizio [1 ]
Valsasina, Paola [2 ]
D'Ambrosio, Alessandro [1 ]
Bisecco, Alvino [1 ]
Rocca, Maria A. [2 ,3 ,6 ]
Tommasin, Silvia [7 ]
Marzi, Chiara [8 ]
De Stefano, Nicola [9 ]
Battaglini, Marco [9 ]
Pantano, Patrizia [7 ]
Cirillo, Mario [1 ]
Tedeschi, Gioacchino [1 ]
Filippi, Massimo [2 ,3 ,4 ,5 ,6 ]
Gallo, Antonio [1 ]
机构
[1] Univ Campania Luigi Vanvitelli, Dept Adv Med & Surg Sci, Piazza Luigi Miraglia 2, I-80138 Naples, Italy
[2] IRCCS San Raffaele Sci Inst, Div Neurosci, Neuroimaging Res Unit, Via Olgettina 60, I-20132 Milan, Italy
[3] IRCCS San Raffaele Sci Inst, Neurol Unit, Via Olgettina 60, I-20132 Milan, Italy
[4] IRCCS San Raffaele Sci Inst, Neurorehabil Unit, Via Olgettina 60, I-20132 Milan, Italy
[5] IRCCS San Raffaele Sci Inst, Neurophysiol Serv, Via Olgettina 60, I-20132 Milan, Italy
[6] Univ Vita Salute San Raffaele, Via Olgettina 58, I-20132 Milan, Italy
[7] Sapienza Univ Rome, Dept Human Neurosci, Viale Univ 30, I-00185 Rome, Italy
[8] Natl Res Council CNR, Inst Appl Phys Nello Cararra IFAC, Via Madonna Piano 10, I-50019 Florence, Italy
[9] Univ Siena, Dept Med Surg & Neurosci, Siena, Italy
关键词
Multiple sclerosis; MS; Quality control; MRI; Functional magnetic resonance imaging; Functional connectivity; SIGNAL-TO-NOISE; MOTION ARTIFACTS; FMRI; BRAIN; IMPACT; REPRODUCIBILITY; HARMONIZATION; VARIABILITY; STRATEGIES; DIAGNOSIS;
D O I
10.1007/s00415-022-11479-z
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
The Italian Neuroimaging Network Initiative (INNI) is an expanding repository of brain MRI data from multiple sclerosis (MS) patients recruited at four Italian MRI research sites. We describe the raw data quality of resting-state functional MRI (RS-fMRI) time-series in INNI and the inter-site variability in functional connectivity (FC) features after unified automated data preprocessing. MRI datasets from 489 MS patients and 246 healthy control (HC) subjects were retrieved from the INNI database. Raw data quality metrics included temporal signal-to-noise ratio (tSNR), spatial smoothness (FWHM), framewise displacement (FD), and differential variation in signals (DVARS). Automated preprocessing integrated white-matter lesion segmentation (SAMSEG) into a standard fMRI pipeline (fMRIPrep). FC features were calculated on pre-processed data and harmonized between sites (Combat) prior to assessing general MS-related alterations. Across centers (both groups), median tSNR and FWHM ranged from 47 to 84 and from 2.0 to 2.5, and median FD and DVARS ranged from 0.08 to 0.24 and from 1.06 to 1.22. After preprocessing, only global FC-related features were significantly correlated with FD or DVARS. Across large-scale networks, age/sex/FD-adjusted and harmonized FC features exhibited both inter-site and site-specific inter-group effects. Significant general reductions were obtained for somatomotor and limbic networks in MS patients (vs. HC). The implemented procedures provide technical information on raw data quality and outcome of fully automated preprocessing that might serve as reference in future RS-fMRI studies within INNI. The unified pipeline introduced little bias across sites and appears suitable for multisite FC analyses on harmonized network estimates.
引用
收藏
页码:1047 / 1066
页数:20
相关论文
共 50 条
  • [1] Resting-state functional MRI in multicenter studies on multiple sclerosis: a report on raw data quality and functional connectivity features from the Italian Neuroimaging Network Initiative
    Alessandro Pasquale De Rosa
    Fabrizio Esposito
    Paola Valsasina
    Alessandro d’Ambrosio
    Alvino Bisecco
    Maria A. Rocca
    Silvia Tommasin
    Chiara Marzi
    Nicola De Stefano
    Marco Battaglini
    Patrizia Pantano
    Mario Cirillo
    Gioacchino Tedeschi
    Massimo Filippi
    Antonio Gallo
    Journal of Neurology, 2023, 270 : 1047 - 1066
  • [2] Correction to: Resting-state functional MRI in multicenter studies on multiple sclerosis: a report on raw data quality and functional connectivity features from the Italian Neuroimaging Network Initiative
    Alessandro Pasquale De Rosa
    Fabrizio Esposito
    Paola Valsasina
    Alessandro d’Ambrosio
    Alvino Bisecco
    Maria A. Rocca
    Silvia Tommasin
    Chiara Marzi
    Nicola De Stefano
    Marco Battaglini
    Patrizia Pantano
    Mario Cirillo
    Gioacchino Tedeschi
    Massimo Filippi
    Antonio Gallo
    Journal of Neurology, 2023, 270 : 2815 - 2815
  • [3] Resting-state functional MRI in multicenter studies on multiple sclerosis: a report on raw data quality and functional connectivity features from the Italian Neuroimaging Network Initiative (vol 270, pg 1047, 2023)
    De Rosa, Alessandro Pasquale
    Esposito, Fabrizio
    Valsasina, Paola
    d'Ambrosio, Alessandro
    Bisecco, Alvino
    Rocca, Maria A.
    Tommasin, Silvia
    Marzi, Chiara
    De Stefano, Nicola
    Battaglini, Marco
    Pantano, Patrizia
    Cirillo, Mario
    Tedeschi, Gioacchino
    Filippi, Massimo
    Gallo, Antonio
    INNI Network
    JOURNAL OF NEUROLOGY, 2023, 270 (05) : 2815 - 2815
  • [4] Sex Differences in Resting-State Functional Connectivity in Multiple Sclerosis
    Koenig, K. A.
    Lowe, M. J.
    Lin, J.
    Sakaie, K. E.
    Stone, L.
    Bermel, R. A.
    Beall, E. B.
    Rao, S. M.
    Trapp, B. D.
    Phillips, M. D.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2013, 34 (12) : 2304 - 2311
  • [5] Hippocampal resting-state functional connectivity in multiple sclerosis subtypes
    Salavedra-Pont, J.
    Contreras-Rodriguez, O.
    Biarnes-Duran, C.
    Quintana, E.
    Coll-Martinez, C.
    Moreno, B.
    Cedeno, R. Robles
    Ramio-Torrenta, L.
    Gich, J.
    MULTIPLE SCLEROSIS JOURNAL, 2020, 26 (3_SUPPL) : 505 - 505
  • [6] Functional Connectivity Alterations in Epilepsy from Resting-State Functional MRI
    Rajpoot, Kashif
    Riaz, Atif
    Majeed, Waqas
    Rajpoot, Nasir
    PLOS ONE, 2015, 10 (08):
  • [7] A Systematic Review of Resting-State Functional MRI Connectivity Changes and Cognitive Impairment in Multiple Sclerosis
    Jandric, Danka
    Doshi, Anisha
    Scott, Richelle
    Paling, David
    Rog, David
    Chataway, Jeremy
    Schoonheim, Menno M.
    Parker, Geoff
    Muhlert, Nils
    BRAIN CONNECTIVITY, 2022, 12 (02) : 112 - 133
  • [8] Fatigue in multiple sclerosis: The contribution of resting-state functional connectivity reorganization
    Bisecco, Alvino
    Di Nardo, Federica
    Docimo, Renato
    Caiazzo, Giuseppina
    d'Ambrosio, Alessandro
    Bonavita, Simona
    Capuano, Rocco
    Sinisi, Leonardo
    Cirillo, Mario
    Esposito, Fabrizio
    Tedeschi, Gioacchino
    Gallo, Antonio
    MULTIPLE SCLEROSIS JOURNAL, 2018, 24 (13) : 1696 - 1705
  • [9] Fatigue in Multiple Sclerosis: The Contribution of Resting-State Functional Connectivity Reorganization
    Bisecco, Alvino
    Di Nardo, Federica
    Docimo, Renato
    Caiazzo, Giuseppina
    d'Ambrosio, Alessandro
    Sacco, Rosaria
    Bonavita, Simona
    Cirillo, Mario
    Esposito, Fabrizio
    Tedeschi, Gioacchino
    Gallo, Antonio
    NEUROLOGY, 2016, 86
  • [10] Auditory Resting-State Network Connectivity in Tinnitus: A Functional MRI Study
    Maudoux, Audrey
    Lefebvre, Philippe
    Cabay, Jean-Evrard
    Demertzi, Athena
    Vanhaudenhuyse, Audrey
    Laureys, Steven
    Soddu, Andrea
    PLOS ONE, 2012, 7 (05):