Resting-state functional MRI in multicenter studies on multiple sclerosis: a report on raw data quality and functional connectivity features from the Italian Neuroimaging Network Initiative

被引:8
|
作者
De Rosa, Alessandro Pasquale [1 ]
Esposito, Fabrizio [1 ]
Valsasina, Paola [2 ]
D'Ambrosio, Alessandro [1 ]
Bisecco, Alvino [1 ]
Rocca, Maria A. [2 ,3 ,6 ]
Tommasin, Silvia [7 ]
Marzi, Chiara [8 ]
De Stefano, Nicola [9 ]
Battaglini, Marco [9 ]
Pantano, Patrizia [7 ]
Cirillo, Mario [1 ]
Tedeschi, Gioacchino [1 ]
Filippi, Massimo [2 ,3 ,4 ,5 ,6 ]
Gallo, Antonio [1 ]
机构
[1] Univ Campania Luigi Vanvitelli, Dept Adv Med & Surg Sci, Piazza Luigi Miraglia 2, I-80138 Naples, Italy
[2] IRCCS San Raffaele Sci Inst, Div Neurosci, Neuroimaging Res Unit, Via Olgettina 60, I-20132 Milan, Italy
[3] IRCCS San Raffaele Sci Inst, Neurol Unit, Via Olgettina 60, I-20132 Milan, Italy
[4] IRCCS San Raffaele Sci Inst, Neurorehabil Unit, Via Olgettina 60, I-20132 Milan, Italy
[5] IRCCS San Raffaele Sci Inst, Neurophysiol Serv, Via Olgettina 60, I-20132 Milan, Italy
[6] Univ Vita Salute San Raffaele, Via Olgettina 58, I-20132 Milan, Italy
[7] Sapienza Univ Rome, Dept Human Neurosci, Viale Univ 30, I-00185 Rome, Italy
[8] Natl Res Council CNR, Inst Appl Phys Nello Cararra IFAC, Via Madonna Piano 10, I-50019 Florence, Italy
[9] Univ Siena, Dept Med Surg & Neurosci, Siena, Italy
关键词
Multiple sclerosis; MS; Quality control; MRI; Functional magnetic resonance imaging; Functional connectivity; SIGNAL-TO-NOISE; MOTION ARTIFACTS; FMRI; BRAIN; IMPACT; REPRODUCIBILITY; HARMONIZATION; VARIABILITY; STRATEGIES; DIAGNOSIS;
D O I
10.1007/s00415-022-11479-z
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
The Italian Neuroimaging Network Initiative (INNI) is an expanding repository of brain MRI data from multiple sclerosis (MS) patients recruited at four Italian MRI research sites. We describe the raw data quality of resting-state functional MRI (RS-fMRI) time-series in INNI and the inter-site variability in functional connectivity (FC) features after unified automated data preprocessing. MRI datasets from 489 MS patients and 246 healthy control (HC) subjects were retrieved from the INNI database. Raw data quality metrics included temporal signal-to-noise ratio (tSNR), spatial smoothness (FWHM), framewise displacement (FD), and differential variation in signals (DVARS). Automated preprocessing integrated white-matter lesion segmentation (SAMSEG) into a standard fMRI pipeline (fMRIPrep). FC features were calculated on pre-processed data and harmonized between sites (Combat) prior to assessing general MS-related alterations. Across centers (both groups), median tSNR and FWHM ranged from 47 to 84 and from 2.0 to 2.5, and median FD and DVARS ranged from 0.08 to 0.24 and from 1.06 to 1.22. After preprocessing, only global FC-related features were significantly correlated with FD or DVARS. Across large-scale networks, age/sex/FD-adjusted and harmonized FC features exhibited both inter-site and site-specific inter-group effects. Significant general reductions were obtained for somatomotor and limbic networks in MS patients (vs. HC). The implemented procedures provide technical information on raw data quality and outcome of fully automated preprocessing that might serve as reference in future RS-fMRI studies within INNI. The unified pipeline introduced little bias across sites and appears suitable for multisite FC analyses on harmonized network estimates.
引用
收藏
页码:1047 / 1066
页数:20
相关论文
共 50 条
  • [21] Resting-state functional connectivity of anterior and posterior cerebellar lobes is altered in multiple sclerosis
    Pasqua, Gabriele
    Tommasin, Silvia
    Bharti, Komal
    Ruggieri, Serena
    Petsas, Nikolaos
    Piervincenzi, Claudia
    Pozzilli, Carlo
    Pantano, Patrizia
    MULTIPLE SCLEROSIS JOURNAL, 2021, 27 (04) : 539 - 548
  • [22] A more unstable resting-state functional network in cognitively declining multiple sclerosis
    Broeders, Tommy A. A.
    Douw, Linda
    Eijlers, Anand J. C.
    Dekker, Iris
    Uitdehaag, Bernard M. J.
    Barkhof, Frederik
    Hulst, Hanneke E.
    Vinkers, Christiaan H.
    Geurts, Jeroen J. G.
    Schoonheim, Menno M.
    BRAIN COMMUNICATIONS, 2022, 4 (02)
  • [23] Regional GABA levels modulate abnormal resting-state network functional connectivity and cognitive impairment in multiple sclerosis
    Zhang, Chao
    Zhang, Kaihua
    Hu, Xin
    Cai, Xianyun
    Chen, Yufan
    Gao, Fei
    Wang, Guangbin
    CEREBRAL CORTEX, 2024, 34 (02)
  • [24] CORTICAL FUNCTIONAL CONNECTIVITY IN PRE-ECLAMPSIA: REPORT OF TWO CASES WITH RESTING-STATE FUNCTIONAL MRI ANALYSIS
    Kurosaki, H.
    Nakahata, K.
    Ejiri, K.
    Kakutani, T.
    Nishikawa, K.
    ANESTHESIA AND ANALGESIA, 2013, 116 : 176 - 176
  • [25] Integration and characterization of brain MRI data from the Italian neuroimaging network initiative (INNI) for the study of multiple sclerosis
    Storelli, L.
    Rocca, M. A.
    Pagani, E.
    Pantano, P.
    De Stefano, N.
    Tedeschi, G.
    Zaratin, P.
    Filippi, M.
    MULTIPLE SCLEROSIS JOURNAL, 2019, 25 : 480 - 480
  • [26] Predicting personality from network-based resting-state functional connectivity
    Nostro, Alessandra D.
    Mueller, Veronika I.
    Varikuti, Deepthi P.
    Plaeschke, Rachel N.
    Hoffstaedter, Felix
    Langner, Robert
    Patil, Kaustubh R.
    Eickhoff, Simon B.
    BRAIN STRUCTURE & FUNCTION, 2018, 223 (06): : 2699 - 2719
  • [27] Integration and Characterization of Brain MRI Data from the Italian Neuroimaging Network Initiative (INNI) for the Study of Multiple Sclerosis
    Storelli, Loredana
    Rocca, Maria
    Pagani, Elisabetta
    Pantano, Patrizia
    De Stefano, Nicola
    Tedeschi, Gioacchino
    Zaratin, Paola
    Filippi, Massimo
    NEUROLOGY, 2019, 92 (15)
  • [28] Predicting personality from network-based resting-state functional connectivity
    Alessandra D. Nostro
    Veronika I. Müller
    Deepthi P. Varikuti
    Rachel N. Pläschke
    Felix Hoffstaedter
    Robert Langner
    Kaustubh R. Patil
    Simon B. Eickhoff
    Brain Structure and Function, 2018, 223 : 2699 - 2719
  • [29] Resting-state functional connectivity networks associated with fatigue in multiple sclerosis with early age onset
    Stefancin, Patricia
    Govindarajan, Sindhuja T.
    Krupp, Lauren
    Charvet, Leigh
    Duong, Timothy Q.
    MULTIPLE SCLEROSIS AND RELATED DISORDERS, 2019, 31 : 101 - 105
  • [30] Neuroimaging of Sudden Unexpected Death in Epilepsy (SUDEP): Insights From Structural and Resting-State Functional MRI Studies
    Allen, Luke A.
    Harper, Ronald M.
    Lhatoo, Samden
    Lemieux, Louis
    Diehl, Beate
    FRONTIERS IN NEUROLOGY, 2019, 10