Entropy generation and Melting heat transfer on the Ferrohydrodynamic flow of Fe3O4-Ag/blood hybrid nanofluid with Cattaneo-Christov heat flux model

被引:12
|
作者
Jakeer, Shaik [1 ]
Reddy, P. Bala Anki [1 ]
Reddy, S. R. R. [2 ]
Basha, H. Thameem [3 ]
机构
[1] Vellore Inst Technol, Dept Math, SAS, Vellore, India
[2] Chennai Inst Technol, Ctr Computat Modeling, Chennai, India
[3] Hongik Univ, Dept Mech & Design Engn, Sejong, South Korea
关键词
Fe3O4-Ag; blood Casson hybrid nanofluid; magnetic dipole; Cattaneo-Christov heat flux; entropy generation; melting; non-melting heat transfer; STAGNATION POINT FLOW; STRETCHING SHEET; SURFACE; FERROFLUID; PLATE;
D O I
10.1080/17455030.2022.2164808
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The physiological system loses heat energy through the bloodstream to nearby cells. Such energy loss can lead to a quick death, anemia, severe hypothermia and high or low blood pressure to heart surgery. As a result, biomedical engineers and physicians are increasingly attracted to the study of entropy production to calculate the energy loss of biological systems. Furthermore, the thermodynamic state of entropy production is used to access cancer cells during chemotherapy treatment and heat transfer in tissues. Because of these applications, the present model illustrates the entropy generation and melting heat transfer on the Ferrohydrodynamic flow of Fe3O4-Ag/blood Casson hybrid nanofluid with Cattaneo-Christov heat flux model. Using suitable self-similarity transformations, the system of momentum and thermal equations are converted into an ordinary differential system, which are resolved by employing the R-K-4th order with the shooting technique. The importance of diverse physical parameters on velocity, temperature, entropy generation, skin friction coefficient, rate of heat transfer, streamlines and isotherm are portrayed through graphs. The results elucidate that the ferromagnetic parameter decreases the blood nanofluid temperature. The velocity expresses the decreasing nature by elevating the inertia coefficient parameter. The Nusselt number increased by improving the values of the radiation parameter (R).
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Comparative Study of Convective Oldroyd-B Nanofluid and Hybrid Nanofluid Flow, Heat and Mass Transfer Analysis Over Stretching Sheet with Cattaneo-Christov Heat Flux Model
    Sreedevi, P.
    Reddy, P. Sudarsana
    JOURNAL OF NANOFLUIDS, 2024, 13 (03) : 839 - 850
  • [42] Significance of Cattaneo-Christov heat flux in Darcy-Forchheimer transport of nanofluid with entropy optimization
    Alqarni, Marei Saeed
    Farooq, Umar
    Manzoor, Umair
    Imran, Muhammad
    Muhammad, Taseer
    Waqas, Hassan
    ADVANCES IN MECHANICAL ENGINEERING, 2022, 14 (09)
  • [43] Numerical study of Carreau nanofluid flow past vertical plate with the Cattaneo-Christov heat flux model
    Vasu, B.
    Ray, Atul Kumar
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2019, 29 (02) : 702 - 723
  • [44] An Impact of Induced Magnetic and Cattaneo-Christov Heat Flux Model on Nanofluid Flow across a Stretching Sheet
    Nihaal, K. M.
    Mahabaleshwar, U. S.
    Perez, L. M.
    Cattani, P.
    JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2024, 10 (03): : 455 - 464
  • [45] Entropy generation of magnetohydrodynamic pulsating flow of micropolar nanofluid in a porous channel through Cattaneo-Christov heat flux model with Brownian motion, thermophoresis and heat source/sink
    Rajkumar, D.
    Reddy, A. Subramanyam
    Chamkha, Ali J.
    WAVES IN RANDOM AND COMPLEX MEDIA, 2022,
  • [46] Three-dimensional flow and heat transfer to burgers fluid using Cattaneo-Christov heat flux model
    Khan, Masood
    Khan, Waqar Azeem
    JOURNAL OF MOLECULAR LIQUIDS, 2016, 221 : 651 - 657
  • [47] Thermally stratified nanofluid flow over porous surface cone with Cattaneo-Christov heat flux approach and heat generation (or) absorption
    Rawat, Sawan Kumar
    Upreti, Himanshu
    Kumar, Manoj
    SN APPLIED SCIENCES, 2020, 2 (02):
  • [48] The influence of MHD and heat generation/absorption in a Newtonian flow field manifested with a Cattaneo-Christov heat flux model
    Ali, Usman
    Rehman, Khalil Ur
    Malik, M. Y.
    PHYSICA SCRIPTA, 2019, 94 (08)
  • [49] Cattaneo-Christov heat flux model for rotating flow and heat transfer of upper-convected Maxwell fluid
    Mustafa, Meraj
    AIP ADVANCES, 2015, 5 (04):
  • [50] Bioconvection effect in the Carreau nanofluid with Cattaneo-Christov heat flux using stagnation point flow in the entropy generation: Micromachines level study
    Li, Shuguang
    Ali, Farhan
    Zaib, A.
    Loganathan, K.
    Eldin, Sayed M.
    Khan, M. Ijaz
    OPEN PHYSICS, 2023, 21 (01):