Editorial for "3D Breast Cancer Segmentation in DCE-MRI Using Deep Learning With Weak Annotation"

被引:0
|
作者
Nogueira, Luisa [1 ,2 ,3 ]
Adubeiro, Nuno [1 ,2 ,3 ]
Nunes, Rita G. [4 ,5 ]
机构
[1] Polytech Inst Porto ESS IPP, Sch Hlth Porto, Dept Radiol, Porto, Portugal
[2] Univ Porto, Inst Publ Hlth, EPIUnit, Porto, Portugal
[3] Lab Integrat & Translat Res Populat Hlth ITR, Dept Publ Hlth, Porto, Portugal
[4] Univ Lisbon, Dept Bioengn, Inst Super Tecn, Lisbon, Portugal
[5] Inst Syst & Robot, Lisbon, Portugal
关键词
D O I
10.1002/jmri.28957
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
引用
收藏
页码:2263 / 2264
页数:2
相关论文
共 50 条
  • [41] Assessment of 3D DCE-MRI of the kidneys using non-rigid image registration and segmentation of voxel time courses
    Zoellner, Frank G.
    Sancee, Rosario
    Rogelj, Peter
    Ledesma-Carbayo, Maria J.
    Rorvik, Jarle
    Santos, Andres
    Lundervold, Arvid
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2009, 33 (03) : 171 - 181
  • [42] DCE-MRI Breast Lesions Segmentation with a 3TP U-Net Deep Convolutional Neural Network
    Piantadosi, Gabriele
    Marrone, Stefano
    Galli, Antonio
    Sansone, Mario
    Sansone, Carlo
    2019 IEEE 32ND INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2019, : 628 - 633
  • [43] Comparison of 2D and 3D U-Net Breast Lesion Segmentations on DCE-MRI
    Bhattacharjee, Roma
    Douglas, Lindsay
    Drukker, Karen
    Hu, Qiyuan
    Fuhrman, Jordan
    Sheth, Deepa
    Giger, Maryellen
    MEDICAL IMAGING 2021: COMPUTER-AIDED DIAGNOSIS, 2021, 11597
  • [44] Diagnosis of Benign and Malignant Breast Lesions on DCE-MRI by Using Radiomics and Deep Learning With Consideration of Peritumor Tissue
    Zhou, Jiejie
    Zhang, Yang
    Chang, Kai-Ting
    Lee, Kyoung Eun
    Wang, Ouchen
    Li, Jiance
    Lin, Yezhi
    Pan, Zhifang
    Chang, Peter
    Chow, Daniel
    Wang, Meihao
    Su, Min-Ying
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 51 (03) : 798 - 809
  • [45] Prediction of breast cancer molecular subtypes using DCE-MRI based on CNNs combined with ensemble learning
    Sun, Rong
    Meng, Zijun
    Hou, Xuewen
    Chen, Yang
    Yang, Yifeng
    Huang, Gang
    Nie, Shengdong
    PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (17):
  • [46] On Unsupervised Methods for Medical Image Segmentation: Investigating Classic Approaches in Breast Cancer DCE-MRI
    Militello, Carmelo
    Ranieri, Andrea
    Rundo, Leonardo
    D'Angelo, Ildebrando
    Marinozzi, Franco
    Bartolotta, Tommaso Vincenzo
    Bini, Fabiano
    Russo, Giorgio
    APPLIED SCIENCES-BASEL, 2022, 12 (01):
  • [47] Deep Convolutional Neural Networks-Based Automatic Breast Segmentation and Mass Detection in DCE-MRI
    Jiao, Han
    Jiang, Xinhua
    Pang, Zhiyong
    Lin, Xiaofeng
    Huang, Yihua
    Li, Li
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2020, 2020 (2020)
  • [48] Joint model- and immunohistochemistry-driven few-shot learning scheme for breast cancer segmentation on 4D DCE-MRI
    Wu, Youqing
    Wang, Yihang
    Sun, Heng
    Jiang, Chunjuan
    Li, Bo
    Li, Lihua
    Pan, Xiang
    APPLIED INTELLIGENCE, 2023, 53 (11) : 14602 - 14614
  • [49] Attention-based Deep Learning for the Preoperative Differentiation of Axillary Lymph Node Metastasis in Breast Cancer on DCE-MRI
    Gao, Jing
    Zhong, Xin
    Li, Wenjuan
    Li, Qin
    Shao, Huafei
    Wang, Zhongyi
    Dai, Yi
    Ma, Heng
    Shi, Yinghong
    Zhang, Han
    Duan, Shaofeng
    Zhang, Kun
    Yang, Ping
    Zhao, Feng
    Zhang, Haicheng
    Xie, Haizhu
    Mao, Ning
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2023, 57 (06) : 1842 - 1853
  • [50] 3TP-CNN: Radiomics and Deep Learning for Lesions Classification in DCE-MRI
    Gravina, Michela
    Marrone, Stefano
    Piantadosi, Gabriele
    Sansone, Mario
    Sansone, Carlo
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2019, PT II, 2019, 11752 : 661 - 671