A benchmark dataset for deep learning-based airplane detection: HRPlanes

被引:8
|
作者
Bakirman, Tolga [1 ]
Sertel, Elif [2 ]
机构
[1] Yildiz Tech Univ, Geomat Engn Dept, Istanbul, Turkiye
[2] Istanbul Tech Univ, Geomat Engn Dept, Istanbul, Turkiye
关键词
Airplane detection; Deep learning; YOLO; Faster R-CNN; Google Earth; REMOTE-SENSING IMAGES; OBJECT DETECTION; AIRCRAFT DETECTION; ROTATION-INVARIANT; SATELLITE IMAGES; RECOGNITION;
D O I
10.26833/ijeg.1107890
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Airplane detection from satellite imagery is a challenging task due to the complex backgrounds in the images and differences in data acquisition conditions caused by the sensor geometry and atmospheric effects. Deep learning methods provide reliable and accurate solutions for automatic detection of airplanes; however, huge amount of training data is required to obtain promising results. In this study, we create a novel airplane detection dataset called High Resolution Planes (HRPlanes) by using images from Google Earth (GE) and labeling the bounding box of each plane on the images. HRPlanes include GE images of several different airports across the world to represent a variety of landscape, seasonal and satellite geometry conditions obtained from different satellites. We evaluated our dataset with two widely used object detection methods namely YOLOv4 and Faster R-CNN. Our preliminary results show that the proposed dataset can be a valuable data source and benchmark data set for future applications. Moreover, proposed architectures and results of this study could be used for transfer learning of different datasets and models for airplane detection.
引用
收藏
页码:212 / 223
页数:12
相关论文
共 50 条
  • [31] Deep Learning-Based Arrhythmia Detection in Electrocardiograph
    Meng, Yang
    Liang, Guoxin
    Yue, Mei
    SCIENTIFIC PROGRAMMING, 2021, 2021 (2021)
  • [32] Deep learning-based detection of seedling development
    Samiei, Salma
    Rasti, Pejman
    Ly Vu, Joseph
    Buitink, Julia
    Rousseau, David
    PLANT METHODS, 2020, 16 (01)
  • [33] A Survey of Deep Learning-Based Object Detection
    Jiao, Licheng
    Zhang, Fan
    Liu, Fang
    Yang, Shuyuan
    Li, Lingling
    Feng, Zhixi
    Qu, Rong
    IEEE ACCESS, 2019, 7 : 128837 - 128868
  • [34] Deep Learning-Based Crack Detection: A Survey
    Son Dong Nguyen
    Thai Son Tran
    Van Phuc Tran
    Hyun Jong Lee
    Md. Jalil Piran
    Van Phuc Le
    International Journal of Pavement Research and Technology, 2023, 16 : 943 - 967
  • [35] Deep Learning-Based Crack Detection: A Survey
    Nguyen, Son Dong
    Tran, Thai Son
    Tran, Van Phuc
    Lee, Hyun Jong
    Piran, Md. Jalil
    Le, Van Phuc
    INTERNATIONAL JOURNAL OF PAVEMENT RESEARCH AND TECHNOLOGY, 2023, 16 (04) : 943 - 967
  • [36] Deep learning-based wall crack detection
    Zheng, Zujia
    Yang, Kui
    International Journal of Wireless and Mobile Computing, 2024, 27 (02) : 118 - 124
  • [37] A Deep Learning-Based Detection of Wrinkles on Skin
    Deepa, H.
    Gowrishankar, S.
    Veena, A.
    COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING ( ICCVBIC 2021), 2022, 1420 : 25 - 37
  • [38] Deep learning-based detection of seedling development
    Salma Samiei
    Pejman Rasti
    Joseph Ly Vu
    Julia Buitink
    David Rousseau
    Plant Methods, 16
  • [39] Deep learning-based detection of eosinophilic esophagitis
    Guimaraes, Pedro
    Keller, Andreas
    Fehlmann, Tobias
    Lammert, Frank
    Casper, Markus
    ENDOSCOPY, 2022, 54 (03) : 299 - 304
  • [40] Deep Learning-Based Intrusion Detection with Adversaries
    Wang, Zheng
    IEEE ACCESS, 2018, 6 : 38367 - 38384