UAV Position Estimation using a LiDAR-based 3D Object Detection Method

被引:1
|
作者
Olawoye, Uthman [1 ]
Gross, Jason N. [1 ]
机构
[1] West Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA
关键词
D O I
10.1109/PLANS53410.2023.10139979
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper explores the use of applying a deep learning approach for 3D object detection to compute the relative position of an Unmanned Aerial Vehicle (UAV) from an Unmanned Ground Vehicle (UGV) equipped with a LiDAR sensor in a GPS Denied environment. This was achieved by evaluating the LiDAR sensor's data through a 3D detection algorithm (PointPillars). The PointPillars algorithm incorporates a column voxel point-cloud representation and a 2D Convolutional Neural Network (CNN) to generate distinctive point-cloud features representing the object to be identified, in this case, the UAV. The current localization method utilizes point-cloud segmentation, Euclidean clustering, and predefined heuristics to obtain the relative position of the UAV. Results from the two methods were then compared to a reference truth solution.
引用
收藏
页码:46 / 51
页数:6
相关论文
共 50 条
  • [41] 3D Object Detection Based on LiDAR Data
    Sahba, Ramin
    Sahba, Amin
    Jamshidi, Mo
    Rad, Paul
    [J]. 2019 IEEE 10TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2019, : 511 - 514
  • [42] Towards Robust Lidar-based 3D Detection and Tracking of UAVs
    Abir, Tasnim Azad
    Kuantama, Endrowednes
    Han, Richard
    Dawes, Judith
    Mildren, Rich
    Phuc Nguyen
    [J]. PROCEEDINGS OF THE DRONET IX WORKSHOP 9TH ACM WORKSHOP ON MICRO AERIAL VEHICLE NETWORKS, SYSTEMS, AND APPLICATIONS, DRONET IX 2023, 2023, : 1 - 7
  • [43] 3D Object Detection Method Using LiDAR Information in Multiple Frames
    Kim, Jung-Un
    Min, Jihong
    Kang, Hang-Bong
    [J]. IMAGE ANALYSIS AND PROCESSING,(ICIAP 2017), PT I, 2017, 10484 : 276 - 286
  • [44] 3D LIDAR-based Ground Segmentation
    Chen Tongtong
    Dai Bin
    Liu Daxue
    Zhang Bo
    Liu Qixu
    [J]. 2011 FIRST ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2011, : 446 - 450
  • [45] Evaluation of LiDAR Inertial Odometry method with 3D LiDAR-based Sensor Pack
    Ogunniyi, Samuel
    Withey, Daniel
    [J]. 2021 RAPID PRODUCT DEVELOPMENT ASSOCIATION OF SOUTH AFRICA - ROBOTICS AND MECHATRONICS - PATTERN RECOGNITION ASSOCATION OF SOUTH AFRICA (RAPDASA-ROBMECH-PRASA), 2022,
  • [46] Curricular Object Manipulation in LiDAR-based Object Detection
    Zhu, Ziyue
    Meng, Qiang
    Wang, Xiao
    Wang, Ke
    Yan, Liujiang
    Yang, Jian
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 1125 - 1135
  • [47] 3D Gaze Point Localization and Visualization Using LiDAR-based 3D Reconstructions
    Pieszala, James
    Diaz, Gabriel
    Pelz, Jeff
    Speir, Jacqueline
    Bailey, Reynold
    [J]. 2016 ACM SYMPOSIUM ON EYE TRACKING RESEARCH & APPLICATIONS (ETRA 2016), 2016, : 201 - 204
  • [48] SF-UDA3D: Source-Free Unsupervised Domain Adaptation for LiDAR-Based 3D Object Detection
    Saltori, Cristiano
    Lathuiliere, Stephane
    Sebe, Nicu
    Ricci, Elisa
    Galasso, Fabio
    [J]. 2020 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2020), 2020, : 771 - 780
  • [49] CNN-based Human Detection Using a 3D LiDAR onboard a UAV
    Hayton, Jack N. C.
    Barros, Tiago
    Premebida, Cristiano
    Coombes, Matthew J.
    Nunes, Urbano J.
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC 2020), 2020, : 312 - 318
  • [50] 3D Terrain Mapping and Object Detection Using LiDAR
    Bharath, S.
    Vinay, S.
    Srividhya, S.
    [J]. COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, VOL. 1, 2022, 878 : 988 - 995