Edge-Site-Free and Topological-Defect-Rich Carbon Cathode for High-Performance Lithium-Oxygen Batteries

被引:37
|
作者
Yu, Wei [1 ]
Yoshii, Takeharu [2 ]
Aziz, Alex [3 ]
Tang, Rui [1 ]
Pan, Zheng-Ze [1 ]
Inoue, Kazutoshi [1 ]
Kotani, Motoko [1 ]
Tanaka, Hideki [4 ]
Scholtzova, Eva [5 ]
Tunega, Daniel [6 ]
Nishina, Yuta [7 ]
Nishioka, Kiho [8 ]
Nakanishi, Shuji [8 ,9 ]
Zhou, Yi [10 ,11 ]
Terasaki, Osamu [10 ,11 ]
Nishihara, Hirotomo [1 ,2 ]
机构
[1] Tohoku Univ, Adv Inst Mat Res WPI AIMR, Sendai 9808577, Japan
[2] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Sendai 9808577, Japan
[3] Tohoku Univ, Adv Inst Mat Res WPI AIMR, JSPS Int Res Fellow, Sendai 9808577, Japan
[4] Shinshu Univ, Res Initiat Supramat RISM, Nagano 3808553, Japan
[5] Slovak Acad Sci, Inst Inorgan Chem, Dubravska Cesta 9, Bratislava 84536, Slovakia
[6] Univ Nat Resources & Life Sci, Inst Soil Res, Peter Jordan Str 82, A-1190 Vienna, Austria
[7] Okayama Univ, Res Core Interdisciplinary Sci, 3-1-1 Tsushima Naka,Kita Ku, Okayama 7008530, Japan
[8] Osaka Univ, Res Ctr Solar Energy Chem, Grad Sch Engn Sci, Toyonaka, Osaka 5608531, Japan
[9] Osaka Univ, Inst Open & Transdisciplinary Res Initiat ICS OTRI, Innovat Catalysis Sci Div, Suita, Osaka 5650871, Japan
[10] ShanghaiTech Univ, Ctr High Resolut Electron Microscopy ChEM, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
[11] ShanghaiTech Univ, Shanghai Key Lab High Resolut Electron Microscopy, Shanghai 201210, Peoples R China
关键词
carbon cathodes; edge sites; graphene mesosponges; lithium-oxygen batteries; topological defects; LI-O-2; BATTERIES; DISCHARGE PRODUCTS; GRAPHENE; LI2O2; ELECTROLYTE; REDUCTION; MORPHOLOGY; EFFICIENCY; KINETICS; VOLATILE;
D O I
10.1002/advs.202300268
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The rational design of a stable and catalytic carbon cathode is crucial for the development of rechargeable lithium-oxygen (Li-O-2) batteries. An edge-site-free and topological-defect-rich graphene-based material is proposed as a pure carbon cathode that drastically improves Li-O-2 battery performance, even in the absence of extra catalysts and mediators. The proposed graphene-based material is synthesized using the advanced template technique coupled with high-temperature annealing at 1800 degrees C. The material possesses an edge-site-free framework and mesoporosity, which is crucial to achieve excellent electrochemical stability and an ultra-large capacity (>6700 mAh g(-1)). Moreover, both experimental and theoretical structural characterization demonstrates the presence of a significant number of topological defects, which are non-hexagonal carbon rings in the graphene framework. In situ isotopic electrochemical mass spectrometry and theoretical calculations reveal the unique catalysis of topological defects in the formation of amorphous Li2O2, which may be decomposed at low potential (similar to 3.6 V versus Li/Li+) and leads to improved cycle performance. Furthermore, a flexible electrode sheet that excludes organic binders exhibits an extremely long lifetime of up to 307 cycles (>1535 h), in the absence of solid or soluble catalysts. These findings may be used to design robust carbon cathodes for Li-O-2 batteries.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Organic hydrogen peroxide-driven low charge potentials for high-performance lithium-oxygen batteries with carbon cathodes
    Shichao Wu
    Yu Qiao
    Sixie Yang
    Masayoshi Ishida
    Ping He
    Haoshen Zhou
    Nature Communications, 8
  • [42] Cobalt nanoparticles decorated hollow N-doped carbon nanospindles enable high-performance lithium-oxygen batteries
    Yang, Xueyun
    Zhu, Jianhao
    Wang, Yingli
    Wang, Jiacun
    Li, Yajuan
    Gu, Yuanxiang
    Lv, Qingliang
    Wang, Lei
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 683 : 926 - 933
  • [43] CoMoP2 nanoparticles anchored on N, P doped carbon nanosheets for high-performance lithium-oxygen batteries
    Xu, Haoran
    Zhao, Lanling
    Liu, Xiaomeng
    Li, Deyuan
    Xia, Qing
    Cao, Xueying
    Wang, Jun
    Zhang, Weibin
    Wang, Huaisheng
    Zhang, Jintao
    FLATCHEM, 2021, 25
  • [44] Organic hydrogen peroxide-driven low charge potentials for high-performance lithium-oxygen batteries with carbon cathodes
    Wu, Shichao
    Qiao, Yu
    Yang, Sixie
    Ishida, Masayoshi
    He, Ping
    Zhou, Haoshen
    NATURE COMMUNICATIONS, 2017, 8
  • [45] High-Performance Carbon-LiMnPO4 Nanocomposite Cathode for Lithium Batteries
    Oh, Seung-Min
    Oh, Sung-Woo
    Yoon, Chong-Seung
    Scrosati, Bruno
    Amine, Khalil
    Sun, Yang-Kook
    ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (19) : 3260 - 3265
  • [46] Monoclinic sulfur cathode utilizing carbon for high-performance lithium sulfur batteries
    Jung, Sung Chul
    Han, Young-Kyu
    JOURNAL OF POWER SOURCES, 2016, 325 : 495 - 500
  • [47] A TEMPO-anchored covalent organic framework towards high-performance lithium-oxygen batteries
    Liu, Lili
    Ge, Keran
    Zhou, Congcong
    Kuai, Meiying
    Zhao, Lanling
    Ding, Yuntao
    Chen, Yuhui
    Fang, Weiwei
    Wu, Yuping
    CHEMICAL ENGINEERING JOURNAL, 2025, 508
  • [48] Three Birds with One Stone: An Integrated Cathode-Electrolyte Structure for High-Performance Solid-State Lithium-Oxygen Batteries
    Li, Chao-Le
    Huang, Gang
    Yu, Yue
    Xiong, Qi
    Yan, Jun-Min
    Zhang, Xin-Bo
    SMALL, 2022, 18 (17)
  • [49] Carbon Decorated Ni(OH)2 Nanoflakes on Ni Foam as a Binder-Free Cathode for Lithium-Oxygen Batteries
    Wang, Yu
    Zhu, Xingbao
    Qin, Jin
    Wang, Zhihong
    Wu, Yuanguo
    Man, Zining
    Yuan, Chengyin
    Lu, Zhe
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (03)
  • [50] Hierarchical Porous Nickel Cobaltate Nanoneedle Arrays as Flexible Carbon-Protected Cathodes for High-Performance Lithium-Oxygen Batteries
    Xue, Hairong
    Wu, Shichao
    Tang, Jing
    Gong, Hao
    He, Ping
    He, Jianping
    Zhou, Haoshen
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (13) : 8427 - 8435