IEMask R-CNN: Information-Enhanced Mask R-CNN

被引:23
|
作者
Bi, Xiuli [1 ]
Hu, Jinwu [1 ]
Xiao, Bin [1 ]
Li, Weisheng [1 ]
Gao, Xinbo [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Dept Comp Sci & Technol, Chongqing 400065, Peoples R China
基金
中国国家自然科学基金;
关键词
Task analysis; Object segmentation; Semantics; Feature extraction; Image segmentation; Location awareness; Head; Instance segmentation; information-enhanced FPN; adaptive feature fusion; encoding-decoding mask head; INSTANCE SEGMENTATION;
D O I
10.1109/TBDATA.2022.3187413
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The instance segmentation task is relatively difficult in computer vision, which requires not only high-quality masks but also high-accuracy instance category classification. Mask R-CNN has been proven to be a feasible method. However, due to the Feature Pyramid Network (FPN) structure lack useful channel information, global information and low-level texture information, and mask branch cannot obtain useful local-global information, Mask R-CNN is prevented from obtaining high-quality masks and high-accuracy instance category classification. Therefore, we proposed the Information-enhanced Mask R-CNN, called IEMask R-CNN. In the FPN structure of IEMask R-CNN, the information-enhanced FPN will enhance the useful channel information and the global information of the feature maps to solve the issues that the high-level feature map loses useful channel information and inaccurate of instance category classification, meanwhile the bottom-up path enhancement with adaptive feature fusion will ultilize the precise positioning signal in the lower layer to enhance the feature pyramid. In the mask branch of IEMask R-CNN, an encoding-decoding mask head will strength local-global information to gain a high-quality mask. Without bells and whistles, IEMask R-CNN gains significant gains of about 2.60%, 4.00%, 3.17% over Mask R-CNN on MS COCO2017, Cityscapes and LVIS1.0 benchmarks respectively.
引用
收藏
页码:688 / 700
页数:13
相关论文
共 50 条
  • [41] Solar Filament Detection using Mask R-CNN
    Salasa, Rian Pramudia
    Arymurthy, Aniati Murni
    [J]. 2019 4TH INTERNATIONAL WORKSHOP ON BIG DATA AND INFORMATION SECURITY (IWBIS 2019), 2019, : 67 - 71
  • [42] Shape of Pill Recognition Using Mask R-CNN
    An, Nguyen Hoang
    Thuy, Le Nhi Lam
    Bao, Pham The
    [J]. FUTURE DATA AND SECURITY ENGINEERING. BIG DATA, SECURITY AND PRIVACY, SMART CITY AND INDUSTRY 4.0 APPLICATIONS, FDSE 2022, 2022, 1688 : 755 - 762
  • [43] An Improved Mask R-CNN Method for Weed Segmentation
    Jin, Shangzhu
    Dai, Haojun
    Peng, Jun
    He, Yuanmin
    Zhu, Min
    Yu, Wencheng
    Li, Qingxia
    [J]. 2022 IEEE 17TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2022, : 1430 - 1435
  • [44] SS R-CNN: Self-Supervised Learning Improving Mask R-CNN for Ship Detection in Remote Sensing Images
    Jian, Ling
    Pu, Zhiqi
    Zhu, Lili
    Yao, Tiancan
    Liang, Xijun
    [J]. REMOTE SENSING, 2022, 14 (17)
  • [45] Dynamic Sparse R-CNN
    Hong, Qinghang
    Liu, Fengming
    Li, Dong
    Liu, Ji
    Tian, Lu
    Shan, Yi
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 4713 - 4722
  • [46] Fast Point R-CNN
    Chen, Yilun
    Liu, Shu
    Shen, Xiaoyong
    Jia, Jiaya
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 9774 - 9783
  • [47] Oriented R-CNN and Beyond
    Xie, Xingxing
    Cheng, Gong
    Wang, Jiabao
    Li, Ke
    Yao, Xiwen
    Han, Junwei
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (07) : 2420 - 2442
  • [48] PESA R-CNN: Perihematomal Edema Guided Scale Adaptive R-CNN for Hemorrhage Segmentation
    Chang, Joonho
    Choi, Inchul
    Lee, Minho
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (01) : 397 - 408
  • [49] AU R-CNN: Encoding expert prior knowledge into R-CNN for action unit detection
    Ma, Chen
    Chen, Li
    Yong, Junhai
    [J]. NEUROCOMPUTING, 2019, 355 : 35 - 47
  • [50] Strawberry R-CNN: Recognition and counting model of strawberry based on improved faster R-CNN
    Li, Jiajun
    Zhu, Zifeng
    Liu, Hongxin
    Su, Yurong
    Deng, Limiao
    [J]. ECOLOGICAL INFORMATICS, 2023, 77