Large amplitude oscillatory shear study of a colloidal gel near the critical state

被引:9
|
作者
Suman, Khushboo [1 ,3 ]
Shanbhag, Sachin [2 ]
Joshi, Yogesh M. [1 ]
机构
[1] Indian Inst Technol Kanpur, Dept Chem Engn, Kanpur 208016, India
[2] Florida State Univ, Dept Sci Comp, Tallahassee, FL 32306 USA
[3] Univ Delaware, Dept Chem & Biomol Engn, Newark, DE 19716 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2023年 / 158卷 / 05期
基金
美国国家科学基金会;
关键词
NONLINEAR VISCOELASTIC PROPERTIES; CONSTITUTIVE EQUATION; YIELDING PROCESSES; POLYMER MELTS; FT-RHEOLOGY; BEHAVIOR; MODEL; STRAIN; GLASS; LAOS;
D O I
10.1063/5.0129416
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A system undergoing sol-gel transition passes through a unique point, known as the critical gel state, where it forms the weakest space spanning percolated network. We investigate the nonlinear viscoelastic behavior of a colloidal dispersion at the critical gel state using large amplitude oscillatory shear rheology. The colloidal gel at the critical point is subjected to oscillatory shear flow with increasing strain amplitude at different frequencies. We observe that the first harmonic of the elastic and viscous moduli exhibits a monotonic decrease as the material undergoes a linear to nonlinear transition. We analyze the stress waveform across this transition and obtain the nonlinear moduli and viscosity as a function of frequency and strain amplitude. The analysis of the nonlinear moduli and viscosities suggests intracycle strain stiffening and intracycle shear thinning in the colloidal dispersion. Based on the insights obtained from the nonlinear analysis, we propose a potential scenario of the microstructural changes occurring in the nonlinear region. We also develop an integral model using the time-strain separable Kaye-Bernstein-Kearsley-Zapas constitutive equation with a power-law relaxation modulus and damping function obtained from experiments. The proposed model with a slight adjustment of the damping function inferred using a spectral method, compares well with experimental data at all frequencies.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] A model of human skin under large amplitude oscillatory shear
    Soetens, J. F. J.
    van Vijven, M.
    Bader, D. L.
    Peters, G. W. M.
    Oomens, C. W. J.
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2018, 86 : 423 - 432
  • [42] Viscous heating in large-amplitude oscillatory shear flow
    Giacomin, A. J.
    Bird, R. B.
    Aumnate, C.
    Mertz, A. M.
    Schmalzer, A. M.
    Mix, A. W.
    PHYSICS OF FLUIDS, 2012, 24 (10)
  • [43] RHEOLOGICAL PROPERTIES OF ANISOTROPIC TISSUES AT LARGE AMPLITUDE OSCILLATORY SHEAR
    Tan, Kristy
    Cheng, Shaokoon
    Bilston, Lynne E.
    PROCEEDINGS OF THE ASME SUMMER BIOENGINEERING CONFERENCE, PTS A AND B, 2012, : 1131 - 1132
  • [44] Numerical simulation of a drop undergoing large amplitude oscillatory shear
    Renardy, Y
    RHEOLOGICA ACTA, 2006, 45 (03) : 223 - 227
  • [45] SIMPLE SCALAR MODEL AND ANALYSIS FOR LARGE AMPLITUDE OSCILLATORY SHEAR
    Merger, Dimitri
    Abbasi, Mahdi
    Merger, Juri
    Giacomin, A. Jeffrey
    Saengow, Chaimongkol
    Wilhelm, Manfred
    APPLIED RHEOLOGY, 2016, 26 (05)
  • [46] Pade approximants for large-amplitude oscillatory shear flow
    Giacomin, A. Jeffrey
    Saengow, Chaimongkol
    Guay, Martin
    Kolitawong, Chanyut
    RHEOLOGICA ACTA, 2015, 54 (08) : 679 - 693
  • [47] Padé approximants for large-amplitude oscillatory shear flow
    A. Jeffrey Giacomin
    Chaimongkol Saengow
    Martin Guay
    Chanyut Kolitawong
    Rheologica Acta, 2015, 54 : 679 - 693
  • [48] LARGE AMPLITUDE OSCILLATORY SHEAR Simple to describe, hard to interpret
    Rogers, Simon
    PHYSICS TODAY, 2018, 71 (07) : 34 - 40
  • [49] Studying Large Amplitude Oscillatory Shear Response of Soft Materials
    Lee, Johnny Ching-Wei
    Park, Jun Dong
    Rogers, Simon A.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2019, (146):
  • [50] A CONSTITUTIVE THEORY FOR POLYOLEFINS IN LARGE-AMPLITUDE OSCILLATORY SHEAR
    GIACOMIN, AJ
    JEYASEELAN, RS
    POLYMER ENGINEERING AND SCIENCE, 1995, 35 (09): : 768 - 777